- 4.3a 2nd order, linear, const coeff,

Ex. Solve the IVP

$$
y^{\prime \prime}-9 y=0 \quad y(0)=2 \text { and } y^{\prime}(0)=-1
$$

(i) Characteristic equ: $r^{2}-9=0, r=-3,3$
(ii) gensoln $y(t)=c_{1} e^{-3 t}+c_{2} e^{3 t}$
\Rightarrow derivative: $y^{\prime}=-3 c_{1} e^{-3 t}+3 c_{2} e^{3 t}$
(iii) Apply the IC.

$$
\begin{aligned}
y(0)=2: \quad y(0) & =c_{1} e^{-3 \cdot 0}+c_{2} e^{3 \cdot 0} \\
2 & =c_{1}+c_{2} \\
y^{\prime}(0)=-1: y^{\prime}(0) & =-3 c_{1} e^{-3 \cdot 0}+3 c_{2} e^{3 \cdot 0} \\
-1 & =-3 c_{1}+3 c_{2}
\end{aligned}
$$

2egns

$$
\text { of } 2 \text { unknown }
$$

(iv) Sole for the constants:

- graphical
- substitution
- elimination

$$
C_{1}+c_{2}=2
$$

- Gauss - Jordan

$$
-3 c_{1}+3 c_{2}=-1
$$

- Crameis Rule
- matrix inversion
armani "method
- contactor method 2 2 2: method
$\left[\mathbb{A} \mid\right.$ II] $\xrightarrow{\text { E.R.ops }\left[I I \mid A^{-1}\right]}$

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
-3 & 3 & 0 & 1
\end{array}\right]^{* 3} \rightarrow\left[\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
0 & 6 & 3 & 1
\end{array}\right]^{*-6} } \\
\rightarrow & {\left[\begin{array}{rr|rr}
-6 & -6 & -6 & 0 \\
0 & 6 & 3 & 1
\end{array}\right] \$+\left[\begin{array}{rr|rr}
-6 & 0 & -3 & 1 \\
0 & 6 & 3 & 1
\end{array}\right] \div 6 }
\end{aligned}
$$

If $\mathbb{A} \vec{c}=\vec{b}$ then $\vec{c}=\mathbb{A}^{-1} \vec{b}$

$$
\begin{aligned}
& \binom{c_{1}}{c_{2}}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{6} \\
\frac{1}{2} & 16
\end{array}\right)\binom{2}{-1} \\
& \binom{c_{1}}{c_{2}}=\binom{\frac{2}{2}+\left(\frac{-1}{6}\right)(-1)}{\frac{2}{2}+\left(\frac{1}{6}\right)(-1)}=\binom{7 / 6}{5 / 6}
\end{aligned}
$$

(v) specific Solution:

$$
y(t)=\frac{7}{6} e^{-3 t}+\frac{5}{6} e^{3 t}
$$

This is the solution to $y^{\prime \prime}-9 y=0, y(0)=2, y^{\prime}(0)=-1$

EX Solve $y^{\prime \prime}+11 y^{\prime}+24 y=0$ with $y(0)=0$

$$
y^{\prime}(0)=-7
$$

(i) Characteristic

$$
\begin{aligned}
& r^{2}+11 r+24=0 \\
& (r+8)(r+3)=0 \Rightarrow r_{1}=-8, r_{2}=-3
\end{aligned}
$$

(ii) GenSoln: $y(t)=c_{1} e^{-8 t}+c_{2} e^{-3 t}$
(iii) IVP:

$$
\begin{aligned}
& y^{\prime}(t)=-8 c_{1} e^{-x t}-3 c_{2} e^{-3 t} \\
& y(0)=0 \Rightarrow c_{1}+c_{2}=0 \\
& y^{\prime}(0)=-7 \Rightarrow-8 c_{1}-3 c_{2}=-7
\end{aligned}
$$

(iv) Solve:

$$
\begin{aligned}
& c_{1}+c_{2}=0 \rightarrow c_{1}=-c_{2} \\
& 8 c_{1}+3 c_{2}=7 \\
& 1 \\
& -8 c_{2}+3 c_{2}=7 \Rightarrow c_{2}=-\frac{7}{5}
\end{aligned}
$$

$$
c_{1}=\frac{7}{5}
$$

(iv)
(v) Specific Sols:

$$
y(t)=\frac{7}{5} e^{-8 t}-\frac{7}{5} e^{-3 t}
$$

* Be ready for some messy real roots:

$$
\begin{aligned}
& \text { Ex } y^{\prime \prime}-6 y^{\prime}-2 y=0 \Rightarrow r^{2}-6 r-2=0 \\
& r_{1,2}=3 \pm \sqrt{11} \\
& y(t)=c_{1} e^{(3+\sqrt{11}) t}+c_{2} e^{(3-\sqrt{11}) t}
\end{aligned}
$$

