Ordination Differential Equations
Clupt1 $1^{\text {st }}$ order ODE's
1.1 Introduction and Classification

- This is an equation:

$$
y=2 x^{2}+x-10
$$

function: $\quad f(x)=2 x^{2}+x-10$

- Solving Equs:

$$
\begin{aligned}
& y^{2}-4 y-12=0 \\
& (y-6 x(y+2)=0 \\
& (y=6) y=-2 \quad \text { solution }
\end{aligned}
$$

- Differential Equations not only contain a variable but that variables rate of change.

$$
y^{\prime}+y=0 \quad y^{\prime} \equiv \frac{d y}{d x}
$$

How can we guess a functor $y(x)$ such that it's derivatme added 6 the function itself is zero?
Solving such egns is the topic of this Class: Differential Egus

Ex Cont $y^{\prime}+y=0$
by observation $y \equiv 0$ is a solution
$\frac{d y}{d x}=0$ al so and the
DIE. $y!+y=0$ becomes $0+0=0$
$y=0$ is reffered to as the trivia s Sol

- The more analytic way is to seseate variables and integrate

$$
\begin{aligned}
& \frac{d y}{d x}+y=0 \\
& \rightarrow \frac{d y}{d x}=-y \quad \forall d x \xi+y
\end{aligned}
$$

$\xrightarrow[\text { mode }]{\text { differential }} \frac{d y}{y}=-d x$ integrate

$$
\begin{aligned}
& \int \frac{d y}{y}=-\int d x \\
& \ln |y|=-x+c\{\text { exponentiale } \\
& e^{\ln |y|}=e^{-x+C}
\end{aligned}
$$

- If we are given a condition such as $\frac{y(0)=8}{}$ then we can determine C

$$
\begin{aligned}
& \longrightarrow y(0)=C e^{-0} \\
& \stackrel{\downarrow}{8}=C .1 \Rightarrow C=8 \\
& y(x)=8 e^{-x} \begin{array}{l}
\text { specific } \\
\text { solution }
\end{array}
\end{aligned}
$$

* Solving differential ens is just a process of integration
diff'n is a science. Int n is an Art.
* Nomenclature
$y^{\prime}+y=0$ is an Ordinary Differential Eq
-if $u=f(x, y, z)$ the if we take the derivative of f writ. only on var, y, say the m call that a parial derivation
(ex)

$$
\begin{aligned}
u= & x y^{2}+z^{2} \\
\frac{\partial u}{\partial y} & =\frac{\partial\left(x y^{2}+z^{2}\right)}{\partial y} \\
& =x \frac{\partial y^{2}}{\partial y}+0 \\
\frac{\partial u}{\partial y} & =2 x y \quad \text { likewise } \frac{\partial u}{\partial x}=y^{2} \xi \frac{\partial u}{\partial z}=2 z
\end{aligned}
$$

- Equations with partial derivatives such as $\frac{\partial u(x, \dot{y}, z)}{\partial y}+u=\frac{\partial u(x, y)}{\partial z}$ is called a

Partial differential Equation PDE

$$
u=F(x, y, z)
$$

*Order: - An ODE with the highest derivation of y^{\prime} is $1^{\text {st }}$ order ODE.
(ex) $y^{\prime}+y=0 \quad 1 \leq t$ order $O D E$

- $y^{\prime \prime}$ is $2^{\text {nd }}$ order
ex) $y^{\prime \prime}+\frac{b}{m} y^{\prime}+\frac{12}{m} y=0 \quad 2^{\text {hd ordel }}$ ODE
- e le $m \leftarrow$ damp " b "
- $y^{\text {(iv) }}$ is $4^{\text {th }}$ order
$*$ Linear vs. non-linear
$y^{\prime}+y=0$ is linear $y^{\prime}+y^{2}=0$ is non-linear
$y^{\prime}+\sin (y)=0$ is non-lincar $y^{\prime}+$ independent. var. $y^{\prime}+x^{2} y=0$ is linear
dependent variable
Recall

$$
y=f(x)
$$

$\begin{array}{ll}y^{\prime \prime}+\sin (x) y=0 & \text { linear } 2^{\text {ndl }} \text { order } O D E \\ \left(y^{\prime \prime}\right)^{2}+\sin (x) y=0 & 2^{\text {nd }} \text { order Non-linear }\end{array}$ $y^{\prime \prime \prime}+y \cdot y^{\prime \prime}+y^{\prime}+y=0$ Non lin $3^{\text {rd }}$ drder $\uparrow \uparrow$

$$
y^{(i v)}+\sin (y)=0 \text { Non-linear 4th order }
$$

Initial Value Problems (IVP)

- ODE's soluntons use constants if integrat

$$
y^{\prime \prime}+1=0
$$

$\rightarrow \quad y^{\prime \prime}=-1$ usedefn.

$$
\begin{aligned}
\frac{d\left(\frac{d y}{d x}\right)}{d x} & =-1 \\
d\left(\frac{d y}{d x}\right) & =-d x \\
\int d\left(\frac{d y}{d x}\right) & =-\int d x \\
y^{\prime} & =-x+c \\
\frac{d y}{d x} & =-x+c
\end{aligned}
$$

$$
d\left(\frac{d y}{d x}\right)=-d x \quad \text { infegrate }
$$

$$
y=\frac{-x^{2}}{2}+c x+d \text { gell }
$$

1 St
order ODE', have gen. solutions with one constant.
$2^{\text {nd }}$ order ODE's have gen. Solus with 2 cont
$n^{\text {th }}$ order ODE'S have n-conditions

- An initial value problem is an ODE with sufficient data to pindown one sole.

$$
\left\{\begin{array}{l}
\text { IVA. }\left\{\begin{array}{l}
y^{\prime}+y=0, y(0)=8 \\
y^{\prime \prime}+y=0, y(0)=8, y^{\prime}(0)=-1 \\
\underbrace{y^{\prime \prime}-y=0}_{\text {ODE's }}, \underbrace{y(1)=5, y^{\prime}(1)=-2, y^{\prime \prime}(1)=0}_{\text {Initial "Conditions }} \\
\begin{array}{l}
\text { Both } \\
\text { give }
\end{array} \Rightarrow \text { Specific Solution }
\end{array}\right.
\end{array}\right.
$$

* BVP are Boundary Value Problems

Ex $\quad y^{\prime \prime}+3 y^{\prime}-2 y=0 \quad y(0)=10,\{y(3)=-2$
no conditions involving derivatives only different locations, then we call the ODE $\%$ Conditions
a Boundary Value Problem (BVP)

* Implicit vs. Explicit Solutions
- Recall from Calculus an equation such as $y^{2}+\sin \left(x^{2}\right)=1$ is an implicit eph. vs. $y= \pm \sqrt{1-\sin \left(x^{2}\right)}$ is an explicit est
- sometimes an $\partial D E$ cannot be solved for the depenelent variable.
$\frac{d y}{d x}>=\frac{x}{y}$ Solve using "Separation of variables"

$$
\begin{aligned}
& y d y=-x d x \\
& \int y d y=-\int x d x \\
& \frac{y^{2}}{2}=-\frac{x^{2}}{2}+C \\
& x^{2}+y^{2}=2 C \\
& x^{2}+y^{2}=c^{2} \\
& y= \pm \sqrt{c^{2}-x^{2}} \text { cesplicitsolution }
\end{aligned}
$$

* families of solutions
$y=C e^{-x} \leftarrow$ one parameter family
$y=a x^{2}+b x+c \longleftarrow$ three parameter fam, y
- in general an n-th order ODE has a soluthefamily with n-parameters.
- To felly determine these n-parameter we need n - initial conditions.
\otimes
pica-wise Solutions
(ex) $x y^{\prime}-4 y=0$ this has a solute.

$$
y=\left\{\begin{array}{cc}
-\frac{x^{4}}{} \quad x<0 \\
x^{4} & x \geqslant 0
\end{array}\right.
$$

prove a solution is valid
(ex) Show the implicit relationship

$$
y^{2}+\left(x^{2}+1\right) y-3 x^{3}=c
$$

is a solution to the ODE

$$
\left(2 x y-9 x^{2}\right) d x+\left(2 y+x^{2}+1\right) d y=0
$$

\rightarrow Implicitly differentiate product rule

$$
\begin{array}{r}
2 y d y+d\left(x^{2}+1\right) \cdot y+\left(x^{2}+1\right) \cdot d y-3 \cdot 3 x^{2} d x=0 \\
2 y d y+2 x d x \cdot y+\left(x^{2}+1\right) \cdot d y-9 x^{2} d x=0
\end{array}
$$

group

$$
\begin{gathered}
\left(2 x y-9 x^{2}\right) d x+\left(2 y+x^{2}+1\right) d y=0 \\
\text { same ODE }
\end{gathered}
$$

same ODE

Diffeential Equations
(1.1) Introduction

Anequation that invobres a variable cand the rate's if charge of that variable is called a differenticl ecuatio.
Q: Where might Diff, Esns come form?
From Nenton's Law in Physics

$$
F=m a
$$

Thi the Foreegn becomes $F=m \ddot{x}$

- Nou if the forca is a spring vel know fom

Hooke's Lav that $F_{s p}=-k x$
根
The eqn becomes $\quad \begin{aligned} & F_{s p}=m a \\ & -k x=m \dot{x}\end{aligned}$
Recontis ue to get $m x+12 x=0$

$$
\ddot{x}+\frac{k}{m} x=0
$$

(A) Finally lets introduce a system of Differentile Eggs. (9)
(A) Systems of ODE'S: Source of salt

\& Here: water

Here: total

$$
\left\{\begin{array}{l}
\text { total } \\
Q_{1}=\text { salt in tank } 1 \\
Q_{2}=\text { total } \\
\text { salt in tank } 2 \\
(\text { once water is } \\
\text { evaporated. }
\end{array}\right.
$$

- we could end up with a system like

$$
\left\{\begin{array}{l}
\frac{d Q_{1}}{d t}=4 Q_{1}+3 Q_{2} \\
\frac{d Q_{2}}{d t}=6 Q_{2}+Q_{1}
\end{array}\right\} \text { system of evaporated }
$$

- Then the system can be written in vector-matrix form:

$$
\left.\rightarrow \begin{array}{c}
\text { - Then the system can be written in } \\
Q_{1} \\
Q_{2}
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
4 & 3 \\
6 & 1
\end{array}\right)}_{A}\binom{Q_{1}}{Q_{2}}^{w}
$$

OR $\dot{\vec{q}}=A \vec{q}$ condensed vector version of

- Use IC. $\begin{cases}Q_{1}(0)=100 & \text { to determine } \\ Q_{2}(0)=200 & \text { the } a, b, c, d \\ \text { constants }\end{cases}$ constants.
\Rightarrow Complete solution

