5.4) Work (Application \#3)

In mechanics there is a quitity known as
Work - Work is an energy type like Kinetic energy, potential energy, thermal energy atomic energy.

- Conssaration of Energy says that we car transform energy form one type to another. But we cannot destroy energy (mass).

Full Potential
Energy At anystato-
(Full Kinetic Energy (location)
Work

$$
K_{0}+P_{0}=K_{f}+P_{f}+W_{\text {per }} \text { ion }
$$

Work is $\vec{F} \cdot \vec{D}$:
$\vec{D}=$ displacement
$\vec{F}=$ Force applied.

$$
W=\vec{F} \cdot \vec{D}
$$

Fran Trig
$\vec{A} \cdot \vec{B}=\|\vec{A}\|\|\vec{B}\| \cos \theta$

- Over the course of transversal the force and displacement may change.
wind $\xrightarrow{c_{0} \operatorname{cail}^{2}}$

$$
\begin{aligned}
& \text { Whop chop into } \\
& \text { pieces } \\
& \text { by wind } \sum_{i=1}^{N} \vec{F} \cdot \Delta \vec{D}
\end{aligned}
$$

- To get most acci'y we take the limit

$$
W=\int \vec{F}(x) \cdot d \vec{x}
$$

line integral
(call III)

- For this recti let $d \vec{x}$ always be in the

Same direction (vertical of horizontal)

x Spring-mass
Hooke'r la nw

$$
F_{s p}=-k x
$$

Find the work done by the spring

$$
\begin{aligned}
W & =\left.\int_{x=0}^{b} F(x) d x\right|_{x=0} ^{x=b} \\
& =-\int_{0}^{0.05} k x d x \\
& =-\int_{0}^{0.05} 250 x d x \\
& =-\left.250 \frac{x^{2}}{2}\right|_{0} ^{0.05} \\
& =-250 \frac{N\left(0.05 m_{-}\right)^{2}}{2} \\
& =0.3125 \underbrace{\mathrm{E}_{\text {Joule }}}_{\text {Nom }} \\
& 0.3125 \mathrm{~J}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { let } b=5 \mathrm{~cm}=0.05 \mathrm{~m} \\
\text { let } k=250 \mathrm{~N} / \mathrm{m}
\end{array}\right.
$$

Ex lifting a chain from deck to ship
A 10 m chain lies on a deck. The end is attached to a cable (massless) which lift the coble end to a height of 6 m . The weight of the chain is 8000 kg . What work does the motor perform that is pulling the cable attached to the chain?

Details
 added ad the lift

- Chain:

$$
\begin{aligned}
& \text { - sensing }=8000 \mathrm{lzg} / 10 \mathrm{~m}=800 \mathrm{~kg} / \mathrm{m} \\
& \text { - geometry }
\end{aligned}
$$

Newton's

$$
F_{g}=m g_{N}
$$

$9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$$
\begin{aligned}
& \text { - Work (vertical) vertical height } \\
& \begin{array}{l}
\Delta W=\Delta F \cdot h \\
\Delta W=\Delta m \cdot g \cdot(6-x))_{m=\rho x}
\end{array} \\
& \Delta W=\Delta F \cdot h \text { horizontal position ofchant. } \\
& \Delta w=\rho \Delta x \cdot g \cdot(6-x) \\
& W=\int^{6 m} \rho g(6-x) d x \\
& x=0 \\
& \rightarrow\left(8000 \frac{\mathrm{hg}}{\mathrm{~m}}\right)\left(\frac{9.8 \mathrm{~m}}{\mathrm{~s}^{2}}\right) \int_{0}^{6}(6-x) d x \\
& =78400 \frac{\mathrm{lg}}{5^{2}}\left(6 x-\frac{x^{2}}{2}\right)_{0}^{6} \\
& =78400\left[\left(36-\frac{36}{2}\right)^{0}-(0-0)\right] \\
& =1411,200\left(\frac{\left(\mathrm{gg}-\mathrm{m}^{2}\right.}{\mathrm{s}^{2}}\right) \mathrm{N}-\mathrm{m} \\
& =1.4 \mathrm{mJoules}
\end{aligned}
$$

- Circular pool is 24 ft in diameter
- Density of water ir $62.5 \mathrm{lbs} / \mathrm{ft}^{3}$
- Welift a horizonal slice xunits high

remove top layer
$\Delta W=\Delta$ weight \cdot height

$$
\Delta W=p \Delta V_{0} l \cdot g \cdot x
$$

$$
A=\pi r^{2} ; r=\text { fixed }=(\operatorname{circ} \cdot / \pi) / 2=\frac{24 f t}{2 \pi}=\frac{12}{\pi} f^{2}
$$

$$
\begin{aligned}
& W=\sum_{\text {slices }} \Delta W \rightarrow W=\int_{x=1 f t}^{5 f t} \rho \cdot A(x) g \cdot x \cdot d x \\
& W=\left(62.5 \frac{\mathrm{lbs})}{f^{3} /\left(\pi \cdot 2^{2} f^{2}\right)\left(32.5 \frac{f t}{s^{2}}\right) \int_{1}^{5} x d x} \begin{array}{l}
=108,000 \pi l b-f t
\end{array}\right.
\end{aligned}
$$

* Notes on draing fluids

fp same answer as if
floats on the sur
inlet to the bottom
Work is only that .f removing top lice.

果前 answer as if the tube face.

- extending the inlet to the bottom

Irrigation

can ignore all this Ponce this (once
hose is primed) $x=0$ @ exit

EX Drain a Conical Tank.

Ex) lets vary the density: Assume now that the fluid in the conical tank has settled with the more dense portions towards the bottom

Now our integral looks like

$$
W=9 \pi R^{2} \int_{x_{1}}^{x_{2}} \underbrace{\left(1+\sqrt{\frac{x}{D}}\right)}_{\rho}(\underbrace{r}
$$

\square $\underset{\substack{\text { radius } \\ \text { ratio }}}{ }$
[Ex Lets assume this tank has fidel in it and it iA. travelling next to a black hole, which has great changes in gravity. $q=$ function of x also.
forex. let $g=g_{0} e^{x}($, this means g stays inside

$$
W=\pi R^{2} \int_{x_{1}}^{x_{2}}\left(g_{0} e^{x / D}\right)\left(1+\sqrt{\frac{x}{D}}\right)\left(1-\frac{x}{P}\right)^{2}(x+H) d x
$$ height gravity density geometry

Practice Problem
A bucket weighs 70 lbs when filled with Water and is lifted from a 60 ft deg well.
(a) what is the work? Constant froe

$$
\begin{aligned}
& W=\int F(x) d x \\
& W=\int_{x=0}^{x-60}(m g) d x \\
& \left\{\begin{array}{l}
W=m g h \\
\binom{F=m g}{W=F \cdot d=m g \cdot h}
\end{array}\right. \\
& =\left.70 \cdot x\right|_{0} ^{60}=70(60-0)=\begin{array}{c}
4200 \\
f t-l 6
\end{array}
\end{aligned}
$$

(b) The bucket leaks water! It weighs only 35 lbs by the time you get it to toe top. What 13 the work now?
Assume the loss of water is linear. Lets try ont different linear arrangements...

equiralance:

$$
\begin{aligned}
& =35 \mathrm{lbs} \cdot \int_{0}^{60}\left(1+\frac{x}{60}\right) d x \\
& =35 \operatorname{lb}\left(x+\frac{x^{2}}{2.60}\right)_{0}^{60}=35\left(60+\frac{60^{2}}{2.60}-0\right) \\
& =35 l b s \cdot 90 f t=70 \operatorname{lbs}_{5} \cdot 45 \mathrm{ft}=3150 \mathrm{ft}-\mathrm{lbs}
\end{aligned}
$$

