4.4 Indefinite Integrals, Net Change

- Def: $\quad \int_{a}^{b} f(x) d x=$ number and is called a definite Integral
- Def $\int f(x) d x=$ function and is called an indefinite integral
(1) Indefinite integrals

$$
\int f(x) d x=F(x)+c
$$

F is the antiderivation of $f(x)$
(a) Since $\frac{d x^{n}}{d x}=n x^{n-1}$ then $\frac{d\left(\frac{x^{n+1}}{n+1}\right)}{d x}=x^{n} \quad(n \neq-1)$
thus $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
Anti-derinatu of x^{n} is $\frac{x^{n+1}}{n+1}$
the integral of x^{n} is $\frac{x^{n+1}}{n+1}$
(b)

$$
\int k d x=k x+c \quad b / c \frac{d(k x)}{d x}=k
$$

the integral is the antiderivation
Differentiation IN Reverse
(c) $\int \underline{\underline{\sin (x)}} d x=-\cos (x)+c \quad b / c \frac{d(-\cos (x))}{d x}=\sin (x)$
(d) $\int \cos (x) d x=\sin (x)+c \quad b / c \frac{d \sin (x)}{d x}=\cos (x)$
(e) $\int \sec ^{2}(x) d x=\tan (x)+c \quad b / c \frac{d \tan (x)}{d x}=\sec ^{2}(x)$
(f) $\int \csc ^{2}(x) d x=-\cot (x)+c \quad b / c \quad \frac{d-\cot (x)}{d x}=\csc ^{2}(x)$
(g) $\int \sec (x) \tan (x) d x=\sec (x)+c$

$$
b / c \frac{d \sec (x)}{d x}=\sec (x) \tan
$$

(h) $\int \csc (x) \cot (x) d x=-\csc (x)+c$
"Hey, where is $\int \tan (x) d x$?"

$$
b / c \frac{d-c s c(x)}{d x}=\csc (x) \cot x
$$

- Ans: chapter 7 but untilther lets look at stewants table of Integrals \{end leafs \} ~

$$
\int \tan (x) d x=\ln |\sec (x)|+C
$$

Do not derive or use until Chat 7 Call II

Ex Integrate $\int\left(\frac{x^{3}-2 \sqrt{x}}{\lambda^{3}}\right) d x$

$$
\begin{aligned}
& \int\left(\frac{x^{3}}{x}-\frac{2 \sqrt{x}}{x}\right) d x \\
= & \int\left(x^{2}-2 x^{1 / 2-1}\right) d x \\
= & \int x^{2} d x-2 \int x^{-1 / 2} d x \\
= & \left(\frac{x^{2+1}}{2+1}+c\right)-2\left(\frac{x^{-1 / 2+1}}{-\frac{1}{2}+1}+c\right)^{3} \\
= & \frac{x^{3}}{3}-2 \frac{x^{1 / 2}}{1 / 2}+c \\
= & \frac{x^{3}}{3}-4 \sqrt{x}+c
\end{aligned}
$$

math 211

1. Integrate $\int \frac{\sin (x)}{\cos ^{2}(x)} d x \int \begin{aligned} & \text { Hint. convect to sec, tan, } \\ & \text { etc \} }\end{aligned}$
2. Integrate $\int \sec (t)[\sec (t)+\tan (t)] d t$
3. $\int \frac{\sin (2 x)}{\sin (x)} d x \quad\{$ Use an identity for $\sin (2 x)\}$

II Net Change
FTC•II

$$
\int_{\text {rate of }}^{\int_{\text {change }}^{b} F^{\prime}(t) d t=F(b)-F(a)}
$$

Volume of Liquid in a tank.

- let $V(t)=$ volume of liquid in a tank at time "t"
 Combined rate of change of the volume is $\frac{d V(t)}{d t}$
The the volume change at a further time follows this formula (FTCII)

$$
V\left(t_{2}\right)=V\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} V^{\prime}(t) d t
$$

let $V^{\prime}(t)=\frac{1}{t^{2}}$ if $t>1$ min. Find the volume in the tank at $t=3 \mathrm{~min}$, start@ $t_{1}=1 \mathrm{~m}$

$$
\begin{aligned}
& V(3)=V(1)+\int_{1}^{3}\left(\frac{1}{t^{2}}\right) d t \\
& V(3)=\left.\frac{1}{t^{2}}\right|_{t=1} ^{3}+\int_{1}^{3} t^{-2} d t \\
& V(3)=1+\left.\left(\frac{t^{-1}}{-1}\right)\right|_{1} ^{2} \\
& =1-\left.\frac{1}{t}\right|_{1} ^{2}+\left.\frac{t^{-2+1}}{-2+1}\right|_{1} ^{2}=\left(-\left(\frac{1}{2}-\frac{1}{1}\right)\right. \\
&
\end{aligned}=-1=3 / 2
$$

(8) Density

- Linear Densify $=$ mass $/$ ling th

$$
\begin{aligned}
& \text { Instantaneous density } \\
& \left.\Rightarrow p=\frac{d m(x)}{d x}\right]
\end{aligned}
$$

Variable density $\rho=f(x)$
(ex)

$$
80 \% \text { lead }
$$

$$
20 \% \mathrm{Al}
$$

$$
\Delta m=\rho(x) \cdot \Delta x
$$

So $\Delta m=\left(\frac{d m(x)}{d x}\right) \Delta x$

$$
\text { - Total mass }=\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot \Delta x
$$

-netmass@x=b is

$$
m(b)=m(a)+\int_{a}^{b} p(x) d x
$$

Ex: If a rod's density falls of as $\rho(x)=\frac{\rho_{0}}{\sqrt{x}}$
Find the mass between $a=1 \mathrm{~cm}\{b=8 \mathrm{~cm}$

Economics
If $C(x)$ is the cost to produce x widgets of a commodity, like cell phones, say, then the marginal cost is $C^{\prime}(x)$ and represents the cost per unit after x widgets have been produced.
The net change of $\operatorname{Cos} t$ from X_{1}, widgets to X_{2} widgets is then

$$
C\left(x_{2}\right)-C\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} C^{\prime}(x) d x
$$

let : 4- $0.02 \times$ be the marginal $-\cos t t_{0}$ produce x toothbrushes. What is the cost expended from the $10^{\text {th }}$ brush to the $30^{\text {th }}$ brush

$$
\begin{aligned}
C^{\prime}(x) & =4-0.02 x \\
\Delta C & =\int_{10}^{30}(4-0.02 x) d x \\
& =\left.4 x\right|_{10} ^{30}-\left.0.02 \frac{x^{2}}{2}\right|_{10} ^{30} \\
& =4(30-10)-\frac{0.02}{2}\left(30^{2}-10^{2}\right) \\
& =80-0.01(900-100)
\end{aligned} \quad \begin{aligned}
& =80-0.01(800) \\
& =80-8 \\
& =72 \$
\end{aligned}
$$

* Electrical Charge

Current in a wire ord capacitor is the amount of charge flowing across some reference point per unit tine

$$
I \equiv \frac{\Delta Q}{\Delta t}
$$

Instantaneous currant is $I=\frac{d Q}{d t}$
What does $\int_{t=a}^{t=b} I(t) d t$ mean?
Ans:

$$
\begin{aligned}
& t=a \\
& \int_{a}^{b}\left(\frac{d Q}{d t}\right) d t=Q(b)-Q(a) \quad \begin{array}{l}
\text { via the } \\
\text { FTC If }
\end{array}
\end{aligned}
$$

A capacitor accumulates charge, and while doing so appears to have a current flowing a cross its plates.

Q: What is the net change of charge if $I(t)=\frac{I_{0}}{t^{3}}$ from $t=1$ s to $t=3$ s

$$
\begin{aligned}
& \Delta Q=\int_{t=1}^{3}\left(\frac{I_{0}}{t^{3}}\right) d t \quad=\left.I_{0} \frac{t^{-2}}{1^{-2}}\right|_{1} ^{3}\left(\frac{I_{4}^{4}}{q}\right) \\
& =-\frac{I_{0}}{2}\left(\frac{1}{3^{2}}-\frac{1}{1^{2}}\right) \\
& =\frac{-I_{0}}{2}\left(\frac{1}{9}-1\right)=\frac{I_{0}}{9} \cdot \frac{8}{9}
\end{aligned}
$$

Area
Consider area under the line $y=x$
Q: How does area grow as we moke x further out on the x-axis?

$$
\begin{aligned}
\text { Area } & =\int_{a}^{b} f(t) d t \\
\text { start } & =\int_{0}^{x}(t) d t \\
& =\left.\frac{t^{2}}{2}\right|_{0} ^{x} \\
A(x) & =\left.\frac{x^{2}}{2}\right|_{A}=\frac{1}{2} b \cdot h
\end{aligned}
$$

If $y=c$ what is $A(x)$?

$$
\begin{aligned}
\frac{A(x) ?}{A(x)} & =\int_{0}^{x} c d t \\
& =\left.c t\right|_{0} ^{x} \\
& =c(x-0) \\
A(x) & =c x \quad A=W \cdot H
\end{aligned}
$$

If $y=x^{2}$ what is $A(x)$?

