4.3 The Fundamental Theorem of Calculus

The: "The Fundamental Theorem of Integral Calculus IE. If $f(x)$ is a continuous function or $[a, b]$ the $g(x)=\int_{a}^{x} f(t) d t$ is also continuous on $[a, b]$ and is differentiable on (a, b)

Further more $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$

proof: we need $\frac{d g(x)}{d x}$ where $g(x)=\int_{a}^{x} f(t) d t$

- by Def. then

$$
=\lim _{h \rightarrow 0}\left(\frac{g(x+h)-g(x)}{h}\right)
$$

becomes

$$
=\lim _{h \rightarrow 0}\left(\frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}\right)
$$

- Split 155 integral up

$$
=\lim _{h \rightarrow 0} \frac{\int_{a}^{x} f(t) d t+\int_{x}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}
$$

So

$$
=\lim _{h \rightarrow 0}\left[\frac{1}{h} \int_{x}^{x+h} f(t) d t\right]
$$

- The Extreme Value the said that if $f(x)$ is continuous on $[a, b]$ then it. attains its $\max ^{M}$ and $\min _{\operatorname{m}}$ on $[a, b]$
- Introduce U and V bet M and m be the max and min of $f(x)$
such that $f(u)=$ min $=m$

(proof)(cont.)
- NextSubstitute for $m=f(u) \& M=f(v)$

$$
\begin{aligned}
& \Longrightarrow f(u) \cdot h \leqslant \int_{x}^{x+h} f(t) d t \leqslant f(v) \cdot h \\
\cdots & \div h \quad f(u) \leqslant \frac{1}{h} \int_{x}^{x+h} f(t) d t \leqslant f(v)
\end{aligned}
$$

- But Recall $\int_{x}^{x+h} f(t) d t$ is just $g(x+h)-g(x)$

$$
\Longrightarrow \quad f(u) \leqslant \frac{1}{h}[g(x+h)-g(x) \leqslant f(v)
$$

Now in the limit as $h \rightarrow 0$ we get $\frac{d g}{d x}$

$$
f(x) \leqslant \frac{d g(x)}{d x} \leqslant f(x)
$$

- But as we squeeze $h \rightarrow 0$ we hare $U \rightarrow x$
likewise as we squeeze $h \rightarrow 0$ weave $\overline{V \rightarrow x}$ also
as "x+h" slides
over the Mande m)
are chang

Slide the $x+h$ bar are changing, \rightarrow founds x bar

- By the squeezethm if $f \leqslant \frac{d g}{d x} \leqslant f$ the

$$
\begin{aligned}
& \frac{d g(x)}{d x}=f(x) \\
& \text { So } \frac{d}{d x} \int_{0}^{x} f(t) d t=f(x) \quad \text { Q.E.D }
\end{aligned}
$$

Ex diff't $\int_{1}^{x} \frac{1}{t^{3}+1} d t$
FT.C.I $\frac{d}{d x}\left(\int_{1}^{x} \frac{1}{t^{3}+1} d t\right)=\frac{1}{x^{3}+1}$

$$
\begin{aligned}
& \text { FTC.I with } \\
& \text { "chain Rule" } \\
& d x \\
& d x
\end{aligned} \int_{a}^{h(x)} f(t) d t=f(x) \cdot \frac{d h(x)}{d x}
$$

Thm F. Thm of C part II I. $F \quad f(x)$ is confinuous on $[a, b]$ then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is the antiderivative of $f(x)$ ie, $\frac{d F(x)}{d x}=f(x)$

Ex Evaluate $\int_{0}^{4}(4-t) \sqrt{t} d t$ by finding an anti-derivative
Find F such that $\frac{d F}{d x}=(4-x)^{\sqrt{x}}$.

- Distribute $\frac{d F}{d x}=4 x^{1 / 2}-x^{3 / 2}$

0 - let F_{1} be such that $\frac{d F_{1}}{d x}=4 x^{1 / 2}$ $\operatorname{Tr} F_{1}=A x^{n}$, then $\frac{d F_{1}}{d x}=A_{n} x^{n-1}$
\rightarrow match $A_{n}=4$ and $n-T=1 / 2$
\rightarrow solve for n st: $n=\frac{1}{2}+1=3 / 2$
\rightarrow Solve for A next: $A \cdot \frac{3}{2}=4 \Longrightarrow A=\frac{8}{3}$
$\rightarrow 5_{0} \quad F_{1}=\frac{8}{3} x^{3 / 2}$
let F_{2} be $\operatorname{such} F_{2}^{\prime}=-x^{3 / 2}$ Let $F_{2} B x^{m}$ then $\frac{d F_{2}}{d x}=m B x^{m-1}$
\rightarrow match $B_{m}=-1$ and $m-1=3 / 2$
$\rightarrow m=\frac{3}{2}+1=\frac{5}{2}$ and So $B \cdot \frac{5}{2}=-1 \Rightarrow B=\frac{-2}{5}$
then $F_{2}=-\frac{2}{5} x^{5 / 2}$
To getter $F=\frac{8}{3} x^{3 / 2}-\frac{2}{5} x^{5 / 2}$
Armed with the anti-derivative proceed to Solve

Now that we have an anti-derivatin (6) we apish FTC pt II

$$
\begin{aligned}
& \int_{0}^{4} \frac{(4-t) \sqrt{t} d t}{(f(\bar{x})}=F(4)-F(0) \\
& \text { where } F(x)=\frac{8}{3} x^{3 / 2}-\frac{2}{5} x^{5 / 2} \\
& \text { So } \\
& \int_{0}^{4}(4-t) \sqrt{t} d t=\left(\frac{8}{3} x^{3 / 2}-\frac{2}{5} x^{5 / 2}\right)\left|-\left(\frac{8}{3} x^{3 / 2}-\frac{2}{5} x^{5 / 2}\right)\right| x=0 \\
& =\underbrace{\left[\frac{8}{3} \sqrt{4}^{3}-\frac{2}{5}(\sqrt{4})^{5}\right]}_{F(b)}-\underbrace{\left[\frac{8}{3}(\sqrt{0})^{3}-\frac{2}{5}(\sqrt{0})^{5}\right]}_{F(a)} \\
& =\frac{64}{3}-\frac{2}{5} 2^{5}=0 \\
& =\frac{64}{3}-\frac{2^{6}}{5} \rightarrow 64\left(\frac{5-3}{5.3}\right) \\
& =\frac{64}{3}-\frac{64}{5} \\
& =64\left(\frac{1}{3}-\frac{1}{5}\right) \\
& =\frac{64 \cdot 2}{15} \\
& =\frac{128}{15} \\
& \text { Ans. }
\end{aligned}
$$

Ex Find the area under $y=\sec ^{2} x$ between 0 and $\pi / 3$
Graph: $y=\sec (x)$

$$
\text { or } y=\frac{1}{\cos (x)}
$$

But we need $\sec ^{2}(x)$, so we square the red cures. Area $=\int_{0}^{\pi / 3} \sec ^{2}(x) d x$
FTCII we need the antiderivative of $\sec ^{2}(x)$ ie.

$$
\frac{d F}{d x}=\sec ^{2}(x)
$$

Recall from Chit $\frac{d \tan (x)}{d x}=\sec ^{2}(x)$

Then

$$
\begin{aligned}
\int_{0}^{\pi / 3} \sec ^{2}(x) d x & =\tan \left(\frac{\pi}{3}\right)-\tan (0) \\
& =\frac{\sin (\pi / 3)}{\cos (\pi / 3)}-\frac{\sin (0)}{\cos (0)} \\
& =\frac{\sqrt{3} / 2}{1 / 2}-\frac{0}{1}=\sqrt{3} \text { \&. units }
\end{aligned}
$$

III Inverse Process
FTC.I $\underset{\prod_{\text {undoes integration }}^{\frac{d}{d x}} \int_{a}^{x} f(t) d t=f(x)}{ } F T C I I\left[\begin{array}{l}\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) \\ \underbrace{}_{\text {undoes differentiate }}\end{array}\right.$ Find out where $\int_{0}^{x}\left(1-t^{2}\right) \sin ^{2}(t) d t$ is increasing we need to know where $\frac{d}{d x} \int_{0}^{x}\left(1-t^{2}\right) \sin ^{2}(t) d t>0$ So when is $\left(1-x^{2}\right) \sin ^{2}(x)$ positive (ByFTGI)

- $\sin ^{2}(x)$ is always (t)
- $1-x^{2}>0 \rightarrow 1>x^{2} \quad x<-1$ or $1>x$

$$
\left(\text { or } x^{2}<1\right) \quad-1<x<1 \text { but } x \neq 0
$$

$(-1,0) \cup(0,1)$ the integral
increases when the upper limit $\{x||x|<1$ with $x \neq 0\}$
otherwise $1-x^{2}=0$

