4.2 The definite Integral
we formally define the integration process
II The Definite Integral

- preliminaries

$$
\begin{aligned}
x_{0} \\
\text { Na" }
\end{aligned}
$$

- Chop the interval $[a, b]$ up into n-pieces. width of the rectangles is

$$
\Delta x=\frac{b-a}{n}
$$

- As "n" increases Δx decreases

- we pick a sample point inside of each rectangle

$$
x_{i} \leqslant x_{i}^{*} \leqslant x_{i+1}
$$

- from a set of sample points.

$$
\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \cdots, x_{n-1}^{*}, x_{n}\right.
$$

Definition
The Definte integral of $f(x)$ from "a "to" b is $\int_{a}^{b} f(x) d x \equiv \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \Delta x$ where $\Delta x=\frac{b-a}{n}$
provided that (i) the limit exists
(i) the limit results in the same value no matter the sample set $\left\{x_{1}^{*}, x_{2}^{*}, \ldots\right]^{0}$

- The integration sign is a stretched "S" S
- If the limit exists we say that $f(x)$ is integrable on $[a, b]$
- $\int_{a}^{b} f(x) d x$ is read as "The integral form 'a' to 'b' of $f(x)$ dee x ". $a\{b$ are called limits.
- $\int_{a}^{b} f(x) d x=$ a fixed number, ant is NoT a variable
- The delta-epsifor explain (we skipped) reads as smaller
- For every, number $\varepsilon>0$ given to us we can find a number N such that for all $n>N$ we ham the inequality

$$
\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \mid<\varepsilon
$$

This must hold for every choice of sample points x_{i}^{t} in the region $\left[x_{i}, x_{i+1}\right]$

- The proper presentation of the integral. is

These symbols must be both expressed together
The "d x " tells us that the limits of integrant are constants in "x".
Bad examples:

$$
\int 3 x^{5} \text { vs. } \underbrace{\int 3 x^{5} d x}_{\text {correct }}
$$

- Terminology
ex:

$$
\int_{y=1}^{2}\left(\int_{x=\sqrt{y}}^{x=3} f(x, y) d x\right) d y
$$

- An indefinite integral has no limits preset and the results are usually a variable
indef.

$$
\begin{aligned}
\int x^{3} d x & =\frac{x^{4}}{4}+c \\
\text { or } \int f(x) d x & =F(x)+c
\end{aligned}
$$

but

$$
\int_{0}^{1} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{1}=\left(\frac{1^{4}}{4}-\frac{0^{4}}{4}\right)=\frac{1}{4}
$$

definite

- The interpretation of $\int_{a}^{b} f(x) d x$ being the area under $f(x)$ i) not entirely correct. We will see that $\int f(x) d x<0$ area"

The: If $f(x)$ is continuous on $[a, b]$ or otherwise has a finite set of jump discontinuity, the $f(x)$ is integrable on $[a, b]$ and thus $\int_{a}^{b} f(x) d x$ exists

$$
\int_{a}^{b} f d x=\int_{a}^{c_{1}} f d x+\int_{c_{1}}^{c_{2}} f d x+\int_{c_{2}}^{b}
$$

-The Riemann Sum is the sum we used to define the integral

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

II Evaluating basic integrals

$$
\text { let } f(x)=2 x^{3}-3 x^{2}+4 x-5
$$

(a) evaluate a "Reimann Sum" for $f(x)$ with the RHS sapling and $a=0, b=2, n=4$

$$
\begin{aligned}
& \text { (ii) } R\left(S H=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x\right. \\
& +f\left(x_{4}\right) \Delta x
\end{aligned}
$$

(iii) populate

$$
\begin{aligned}
& =\left[2(0.5)^{3}-3(0.5)^{2}+4(0.5)-5\right] \cdot \frac{1}{2} \\
& +\left[2(1.0)^{3}-3(1.0)^{2}+4(1.0)-5\right] \cdot \frac{1}{2} \\
& +\left[2(1.5)^{3}-3(1.5)^{2}+4(1.5)-5\right] \cdot \frac{1}{2} \\
& +\left[2(2.0)^{3}-3(2.0)^{2}+4(2.0)-5\right] \cdot \frac{1}{2} \\
& =\left[\frac{7}{2}\right] \frac{1}{2}+[-2] \frac{1}{2}+[1] \frac{1}{2}+[7] \frac{1}{2}
\end{aligned}
$$

$\begin{aligned} & \text { (iv) } \\ & \text { calculate }\end{aligned}=\frac{5}{4}$ or 1.25 estimate $\int_{0}^{2}\left[2 x^{3}-3 x^{2}+4 x-5\right] d x$
(b) fully evaluate the R.S. for n

$$
\begin{aligned}
& \int_{0}^{2}\left(2 x^{3}-3 x^{2}+4 x-5\right) d x \\
& =\lim _{n \rightarrow \infty}\left\{\left[\sum_{i=1}^{n}\left[2\left(x_{i}\right)^{3}-3\left(x_{i}\right)^{2}+4\left(x_{i}\right)-5\right] \Delta x\right\}\right. \\
& \text { Here } x_{i}=i \Delta x \quad \Delta x=\frac{2-0^{\text {end }}}{n}=\frac{2}{n} \Rightarrow x_{i}=i \frac{2}{n} \\
& =\lim _{n \rightarrow \infty}\{\sum_{i=1}^{n} \underbrace{\left.\left.\left[2\left(\frac{2 i}{n}\right)\right)^{3}-3\left(\frac{2 i}{n}\right)\right)^{2}+4\left(\frac{2 i}{n}\right)-5\right] \underbrace{n}_{\Delta x})}_{f\left(x_{i}\right)} \\
& =\lim _{n \rightarrow \infty}\left\{\left[\sum_{i=1}^{n} \frac{2 \cdot 2^{3}}{n^{3}} \cdot i^{3}-\sum_{i=1}^{n} \frac{3 \cdot 2^{2}}{n^{2}} i^{2}+\sum_{i=1}^{n} \frac{4 \cdot 2}{n} \cdot i-\sum_{i=1}^{n} 5\right] \frac{2}{n}\right\} \\
& =\lim _{n \rightarrow \infty}\left\{\frac{32}{n^{4}}\left(\sum_{i=1}^{n} i^{3}\right)-\frac{24}{n^{3}}\left(\sum_{i=1}^{n} i^{2}\right)+\frac{16}{n^{2}}\left(\sum_{i=1}^{n} i\right)-\frac{2 \cdot 5}{n}\left(\sum_{i=1}^{n} 1\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left\{8 \frac{n^{2}}{n^{2}}\left(\frac{n}{n}+\frac{1}{n}\right)^{2}-4\left(\frac{n}{n}\left(\frac{n}{n}+\frac{1}{n}\right)\left(\frac{2 n}{n}+\frac{1}{n}\right)+8\left(\frac{n}{n}\left(\frac{n}{n}+\frac{1}{n}\right)\right)-10\right\}\right. \\
& =\lim _{n \rightarrow \infty}\left\{8 \cdot 1\left(1+\frac{1}{n}\right)^{0}-4\left(1+\frac{1}{n}\right)^{0}\left(2+\frac{1}{n}\right)^{0}+8\left(1+\frac{1}{n}\right)^{0}-10\right\} \\
& =8.1-4.1 .2+8.1-10=-2 \text { exact } \\
& \text { answer. }
\end{aligned}
$$

Note: We will present formulas, such as

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad \frac{d\left(\frac{x^{n+1}}{n+1}+c\right)}{d x}=x^{n}
$$

Note: we need not use formula r or the summation formulas if we can interpret the integral via geometry.
$\int_{0}^{1} \overbrace{\sqrt{1-x^{2}}}^{y=} d x$
using area of a circle

So $\int_{0}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{4}$
III) Numerical Integration (Introduction)

If we cannot analytically evaluate an integral we can use rectangle to approximate it.
The MidPoint Rule

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x
$$

where \bar{x}_{i} is the mid point of the rectangle

$$
\bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2} \text { in the intel }\left[x_{i-1}, x_{i}\right]
$$

why the midpoint?
CHS

RH

The over estitination and under estimation "cancels out" generally speaking.

Name \qquad

1. Use the midpoint rule to approximate the integral $\int_{0}^{4} \sqrt{x^{2}} d x, n=8$

(Ex) Use the midpoint rule with $n=10$ to approximate the integral $\int_{" x=0}^{x=2} \frac{1}{x^{2}} d x$
(i)

$$
\Delta x=\frac{b-a}{n}=\frac{2-0}{10}=\frac{1}{5}
$$

(ii)

$(i i i))^{2}$

$$
\begin{aligned}
& \int_{0}^{2} \frac{d x}{x^{2}} \approx f(0.1) \cdot \frac{1}{5}-f(0.3) \frac{1}{5}+f(0.5) \frac{1}{5}+\cdots+f(1.7) \frac{1}{5}+\frac{f(1.9)}{5} \\
& \left.\approx\left(\frac{1}{0.1^{2}}\right)^{\frac{1}{5}}+\left(\frac{1}{0.3}\right)^{2} \frac{1}{5}+\left(\frac{1}{0.5}\right)^{2} \frac{1}{5}+\left(\frac{1}{0.7}\right)^{2} \frac{1}{5}+\left(\frac{1}{0.9}\right)^{2} \frac{1}{5}+\left(\frac{1}{1.1}\right)^{2} \frac{1}{5}+\left(\frac{1}{1.3}\right)^{2} \frac{1}{5}+\left(\frac{1}{x .5}\right)^{2} \frac{1}{5}\left(\frac{1}{x .7}\right)^{2} \frac{1}{5} \frac{1}{1.9}\right)^{2} \frac{1}{5}- \\
& \text { factor out } 1 / 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { factor out } 1 / 5 \\
& \approx\left[\frac{1}{0.1^{2}}+\frac{1}{0.3^{2}}+\frac{1}{0.1^{2}}+\frac{1}{3.7^{2}}+\frac{1}{0.9^{2}}+\frac{1}{1.1^{2}}+\frac{1}{1.3^{2}} \frac{1}{1.5^{2} 1.7^{2}}+\frac{1}{1.9^{2}}\right] \cdot \frac{1}{5}
\end{aligned}
$$

(iv) TI-30 $X_{a}\left[2 \overline{n d}\right.$ ESR 0.1 ($1 / x$ x^{2} (Et $0.3 \frac{1}{x} \sqrt{x^{2}} \sqrt{E+}$
$00.1 .91 \frac{1}{x} \frac{x^{2}}{\sum+}$
(and $\sum x,[120.8721311] \cdot \frac{1}{5}=24.174426$

Check on Desmos \rightarrow
(IV) Properties of Definite Integrals

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \quad \begin{array}{l}
\text { accumulation is } \\
\text { direction dependent. }
\end{array} \\
& \int_{a}^{a} f(x) d x=0 \\
& \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \\
& \int_{a}^{b} c d x=c(b-a) \\
& \int_{a}^{b}(f+g) d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x \\
& \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b-a} f(x) d x
\end{aligned}
$$

- Let M be the maximum of $f(x)$ on $[a, b]$ Let m be the minimum of $f(x)$ on $[a, b]$

Ex Verity $\int_{0}^{1} \sqrt{1+x^{2}} d x \leqslant \int_{0}^{1} \sqrt{1+x} d x$

we see $\sqrt{1+x}$ is the greater functor between $[0,1]$

IE.

$$
\sqrt{1+x^{2}} \leq \sqrt{x+1} \text { visually }
$$

But analytically we note $x^{2} \leqslant x$ on $[0,1]$

- Add 1 to both sides: $x^{2} \leqslant x$

- Integrate $\int_{0}^{1} \sqrt{1+x^{2}} d x \leqslant \int_{0}^{1} \sqrt{1+x} d x$
- less area

