Differentials, Incremental and Linear Approximations
I) Linear approximation.

- Some tines manipulating an implicit relation is tedius, so we can use a linear approximation near the point in question of the relationship
- The Set-Upi

\rightarrow Some tines its hard to evil. A relatouship (a) $x_{0}+\Delta x$ to get $y_{0}+\Delta y$
\rightarrow So ur e use a linear approximation via the tangent line
- we estimate Δy based on the tangent line
vs. The actual curve.

$$
\begin{aligned}
& \begin{array}{l}
\text { (Applied Computational Fluid Dymaniz sis computatomaly expensive! }\left.\frac{d v}{d y}\right|_{Q} y=h \\
\Rightarrow / L=V^{V^{2}}=\sin ^{2}(\sqrt{y+a})
\end{array} \\
& \text { h } \\
& V^{\prime}=\frac{\sin ^{2}(\sqrt{y+a})}{y^{3 / 2}} \approx \underbrace{m \cdot y} \\
& \text { less computation }
\end{aligned}
$$

- Tangent Lines: $y=m x+b$
$\left.\begin{array}{c}\text { coact } \\ \text { slope } \\ \text { of } \\ \text { cure }\end{array}\right\}=\left.\frac{d f}{d x}\right|_{x=a}$

$$
\begin{aligned}
& \begin{array}{l}
\text { use as } \\
\text { the slap } \\
\text { ot a line }
\end{array}=\frac{\Delta y}{\Delta x}=\frac{y-y_{0}-f(a)}{x-x_{0}} \\
& \left.\frac{d f(x)}{d x}\right|_{x=d} ^{t a}
\end{aligned}
$$

$$
\frac{y-f(a)}{x-a}=f^{\prime}(a)
$$

- We may use $\Delta y=y-f(a)\}^{\prime} \Delta x=x-a$

$$
\frac{\Delta y}{\Delta x}=f^{\prime}(a)
$$

The
$\uparrow_{\text {incremental }}$

$$
\text { tangent } \frac{f(x) \approx f^{\prime}(a)(x-a)+f(a)}{y \approx m(x-a)+y_{a}}
$$

warning: use near $x=\alpha$. Not $\lambda_{c i} t$ too far away from " 2 "
(Ex) let $f(x)=\sqrt[3]{1+x}$
then $\frac{d f}{d x}=\frac{1}{3}(1+x)^{-2 / 3}$
then $\frac{\Delta y}{\Delta x} \approx \frac{1}{3}(1+0)^{-2 / 3}$

$$
\Delta y \approx \frac{1}{3} \Delta x
$$

$$
x=0 \quad(a=0)
$$

So if ne slide over from 0 to 0.1 the the curves change can be agrox. as going from $y=1$ to $y=1+0.033=1.033$
compare to exact value

$$
f(0.1)=\sqrt[3]{1+0.1}=\sqrt[3]{1.1} \approx 1.03 z
$$

- What is the linear agseoximation line?

$$
\left\{\begin{aligned}
&(0,1) \\
& y=m x+b \\
& y=\frac{1}{3} x+b \\
& 1=\frac{1}{3} \cdot 0+b \\
& b=1
\end{aligned}\right\} \begin{aligned}
& \text { Final } \sqrt{\text { linear }} \\
& y=\frac{1}{3} x+1 \\
& \text { approx to } \\
& \sqrt[3]{1+x} \\
& \text { good if we stay close } \\
& \text { to } x=0 .
\end{aligned}
$$

$\operatorname{Lexprox}_{\sqrt[3]{1+x}}^{\sqrt[3]{0.95}}$
$x=-0.05$ near "o

- we cause the same equ. of the linear approx.

$$
\begin{aligned}
& y=\frac{1}{3} x+1 \\
& =\frac{1}{3}(-0.05)+1 \\
& =0.9833 \text { is the approx to } \\
& \sqrt[3]{0.95} \\
& \text { Exact. } \sqrt[3]{0.95}=0.9830 \\
& \text { Q: For what regions of } x \text { will the linear } \\
& \text { approx. be with in } \pm 0.1 \text { acci'y. } \\
& -0.1<f-y_{\tan }<0.1 \\
& -0.1<\sqrt[3]{1+x}-\left(\frac{1}{3} x+1\right)<0.1 \\
& \text { Solve for } x \text { :demos analysis } \\
& \text { Find these } \\
& \text { numbers } 1 \\
& \begin{array}{l}
\text { when } \\
x \in[-0.7,1.2] \\
y_{i} \text { is } \pm 0.1 \mathrm{aci}
\end{array}
\end{aligned}
$$

EX
For $y=\sqrt{x}$ compute Dy and $d y$
(a) for $x=1$, and $\Delta x=1$
(a)

$$
y=f(x)=\sqrt{x} ;\left\{\begin{aligned}
\Delta y & =f(2)-f(1) \\
& \text { curet } \\
& =\sqrt{2}-\sqrt{1} \\
& =0.41421
\end{aligned}\right.
$$

$$
\operatorname{tangent}\left\{\begin{aligned}
d y & =y^{\prime} d x \\
& =\frac{1}{2} x^{-1 / 2} d x \\
d y & =\left.\frac{1}{2 \sqrt{x}} d x\right|_{x=1} \\
d y & =\frac{1}{2} \cdot 1=0.5
\end{aligned}\right.
$$

$$
\begin{gathered}
0.09 \\
\text { difference }
\end{gathered}
$$

(b) let $x=1, \Delta x=0.01$ repeat above. We are mach closer to 1

$$
\text { cure }\left\{A_{y}=f(1.01)-f(1)=\sqrt{1.01}-\sqrt{1}=0.00499\right.
$$

$$
\text { tang. }\left\{\quad d y=\left.\frac{1}{2 \sqrt{x}}\right|_{x=1} ^{d x}=\frac{1}{2 \sqrt{1}}(0.01)=0.00500\right.
$$

Much closer

Physics:
te pendulum er

- Newton'r Law Tangential Acdi'n

$$
\sum F=m a
$$

tan:- $F_{\text {grav }} \sin \theta=m d_{\text {tan. }}$
But convert linears) y. $\downarrow^{\text {ang.accl'n }}$
to angular acilis $-a_{\operatorname{Tan}}=r \alpha$
$\begin{array}{ll}2 \\ 0 & \\ 0\end{array}$

$$
\alpha=\frac{d^{2} \theta}{d t^{2}}, \theta=\frac{a n g l^{\prime} r}{d i s p l}
$$

$$
-m g \sin \theta=m r \frac{d^{2} \theta}{d t^{2}}
$$

$$
\Rightarrow \quad \frac{d^{2} \theta}{d t^{2}}+\frac{r}{g} \sin \theta=0 \quad \begin{aligned}
& \text { Differential equa } \\
& \theta=f(t i m e)
\end{aligned}
$$

I i we can solve this but it is not pretty: i

- We noticed that $\lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta}\right)=1$ in shpt 1 .
- The ratio maintains itself as θ gets smaller and smaller.
- let $f(x)=\sin (x)$

$$
\frac{d f}{d x}=\cos (x)
$$

then near $x=0$
(x) finite change
ger
"infiniturimal
changes"

$$
\Rightarrow \quad \text { yeilds 2 }
$$

Ex Pythagoras' The:

$$
x^{2}+y^{2}=c^{2}
$$

\square
lets Keep the hypotenneus fixed: $c \equiv 1$ then $\quad x^{2}+y^{2}=1$

- Now if we readjust the valve of x a small amount, Δx, by how much does Δy change

Q: By how much

[x] $(\cos t$.)

- using differentials on the equ:

$$
x^{2}+y^{2}=1^{2} \quad \text { we }
$$

implicitly differentiate

$$
\begin{aligned}
& d\left(x^{2}+y^{2}=1^{2}\right) \\
& d x^{2}+d y^{2}=d 1^{2}
\end{aligned}
$$

$2 x d x+2 y d y=0 \quad \sum$ solve for
now $\quad d y=-\frac{x d x}{y}$

$$
d y=-\left(\frac{x}{y}\right) d x
$$

The change in changes

EX

Q : Find Δy given a Δx change.

- Diff't

$$
\begin{aligned}
& x^{2}+y^{2}=1^{2} \\
& 2 x d x+2 y d y=0 \rightarrow d y=-\frac{x}{y} d x
\end{aligned}
$$

$x=0.7$ we
change x by 0.1 , say, for $c=1]$, then
y changes by $-\left(\frac{0.5006}{0.8660}\right)(0.1)$

$$
\Delta y=-0.0577
$$

- Then the new
vertical locator is \approx (d) $y=0.8660-0.0577$

$$
y=0.8083
$$

- BTw: location of y :

$$
\begin{gathered}
x^{2}+y^{2}=1^{2} \\
y=\sqrt{1-(0.500+0.1)^{2}} \\
y=0.8000
\end{gathered}
$$ decimal place

(8) Differentials as variables (cont)
length of a cure (calc II)
(In Calc II we find the $f(x)$
length of a curve by chopping it into lots of small pieces
Then we take
the limit.

- Zoo min:

length of came between $x=a$ to $x=b$ is

$$
L \approx \sum_{n=1}^{N} \Delta s
$$

π sum up all segments
ΔS_{n+1}

- Approximate length...

$$
L \approx \sum_{n \rightarrow 1}^{N} \sqrt{\Delta x^{2}+\Delta y^{2}}
$$

- We take the limit as $\Delta x \rightarrow 0$. We convent
this $\lim _{\Delta x \rightarrow 0} \sum_{x=a}^{x=0} f(x) \cdot \Delta x$ witter as $\int f(x) d x$ So for arc
$\begin{array}{r}\text { Sothe } \\ \text { exact } \\ \text { answer }\end{array} \int_{x=a} \sqrt{d x^{2}+d y^{2}}=\int_{\text {factor ont } d x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2} d x}$
" \int "is called an integral. You need not know or use it until chapter if, I am just showing yon

