chapter 2 The derivative
2.1 Derivatives and Rates of Change

From cupt we discovered that the slope of the tangent line can be expressed as a limit.

$$
m=\lim _{x \rightarrow a} \frac{f(a+h)-f(a)}{(a+h)-a}
$$

OR Just

$$
m=\lim _{x \rightarrow a}\left(\frac{f(a+h)-f(a)}{h}\right)
$$

Numerically $\begin{aligned} & x=2.1 \\ & f(2.1)\end{aligned}\left\{\begin{array}{l}2.01,-7] \\ f(2.01)\end{array}\right]$
calculate $\Rightarrow \mathrm{lm}_{\mathrm{a}}, \mathrm{l}_{\mathrm{m}_{b}}, \mathrm{l}_{\mathrm{m}_{c}}$ obsionat. and we would notice $m_{a} \rightarrow m_{b} \rightarrow m_{c} \rightarrow m$

EX Find the equation of the tangent line t_{0} the graph of $y=x^{2}+2 @(x, y)=(1,3)$

- let $f()=()^{2}+2$
- feed it $1+h \Rightarrow(1+h)^{2}+2$
feed it $1 \Rightarrow(1)^{2}+2$

$$
\text { - } \begin{align*}
m & =\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}\right) \quad a=1 \\
& =\lim _{h \rightarrow 0}\left(\frac{f(1+h)-f(1)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{\left[(1+h)^{2}+2\right]-\left[(1)^{2}+2\right]}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{h+2 h+h^{2}+h-\lambda-2}{h}\right) \quad \begin{array}{l}
\text { slope of } \\
\text { tangent } \\
\text { line }
\end{array} \\
& =\lim _{h \rightarrow 0}\left(\frac{2 h+h^{2}}{h}\right)=2 \tag{2}
\end{align*}
$$

Don' forget ... Find the espn of the tangent line

For lines ur (almost) only need $y=m x+b$ L_{2}

II Velocities
An object moving back and forth along s a straight line may have its position described as a function

Gensally we might plot experimentally, or analytically, and get something like...

Instantaneous velocity (speed)

$$
V=\lim _{t \rightarrow a}\left(\frac{s_{2}-S_{a}}{t_{2}-a}\right), \frac{\Delta s}{\Delta t}=v,
$$

EX lit the position of a bead on a wire be described as $s(t)=t^{2}-8 t+18$
Q: Find the instantaneon speed \& $t=3$

So

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{\left\{(a+h)^{2}-8(a+h)+18\right\}-\left\{[a]^{2}-8[a]+18\right\}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}-8 a-8 h+18-a^{2}+8 / a-18}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a h-8 h+h^{2}}{h}=\lim _{h \rightarrow 0}(2 a-8+h]^{0} \\
\text { Speed } & =m=2 a-8 \\
\text { @ } t & =3\{i e, a=3\} \\
\text { speed } & =2.3-8 \\
V & =-2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

math $211 \quad$ CW2a Name \qquad

1. If speed follows $s=t^{3}+2 t^{2}-9 t+5$ Find the instantaneous velocity at $t=4$, by using a generalized formula in the time parametio'

$$
\begin{aligned}
& f()=()^{3}+2()^{2}-9()+5 \\
& \begin{array}{l}
v=\lim _{h \rightarrow 0} \frac{\left\{(a+h)^{3}+2(a+h)^{2}-9(a+h)+5\right\}-\left\{a^{3}+2 a^{2}-9 a+5\right\}}{h} \\
=\lim ^{2} \frac{a^{2}+3 a^{2} h+3 a h^{2}+h^{3}+2 a^{2}+4 a h+2 h^{2}-4 a-9 h+(5)-a^{3}-2 a^{2}+\operatorname{la}+(5)}{h}
\end{array} \\
& =\operatorname{lin} \frac{3 a^{2} h+3 a h^{2}+h^{3}+4 a h+2 h^{2}-9 h}{h} \\
& =\lim _{h \rightarrow 0}\left(3 a^{2}+3 a h+h^{2}+4 a+2 h-9\right) \\
& =3 a^{2}+4 a-9 \\
& \text { (a) } a=4 \\
& =3 \cdot 4^{2}+4 \cdot 4-9 \\
& =48+16-9 \\
& =64-9 \\
& =55
\end{aligned}
$$

III Derivatives $\left\{\begin{array}{c}\text { what math } 211 \text { is } \\ 80 \% \text { about }\end{array}\right\}$
The derivative of a function f at $x=a$, denoted ln $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

[ie. the slopes

Find the derivative of $f(x)=x^{3}-3 x^{2}+1$ @ $x=a$
After chat 2 is done $f^{\prime}=3 x^{2}-6 x$ a $x=a$ $f^{\prime}(a)=3 a^{2}-6 a$,

Formal approach is

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left\{(a+h)^{3}-3(a+h)^{2}+1\right\}-\left\{a^{3}-3 a^{2}+1\right\}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-3 a^{2}-6 a h-3 h^{2}+a^{3}+3 a^{2}-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 a^{2} h+3 a h^{2}+h^{3}-6 a h-3 h^{2}}{h}=a^{3}+3 a^{2} \\
& =\lim _{h \rightarrow 0} 3 a^{2}+3 a h+h^{2}-6 a-3 h \\
& =\lim _{h \rightarrow 0}\left(3 a^{2}-6 a+3 a h^{2}+h^{2}-3 h\right.
\end{aligned}
$$

$$
\left\{\begin{array}{c}
(a+h)^{3} \\
=a^{3}+3 a^{2} h+3 a h^{2}+h^{3} \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array} 2^{1} \begin{array}{ll}
& \\
\end{array}\right.
$$

The slope of the tangent line of $f^{\prime}(a)=3 a^{2}-6 a\left[\begin{array}{l}\text { The slope if the ton } \\ f(x) \text { at } x=a .\end{array}\right.$

IV Average and

- $\bar{f}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$ secant lime slope

$$
\left.f_{\text {instant }}=\lim _{h \rightarrow 0}\left(\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}\right)\right]
$$

(*) The derivative of $f(x)$ at x is Ene the
vat of
change $\frac{d f(x)}{d x} \equiv \lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right) \rightarrow 0$

- Notation

$$
\text { are } \frac{\Delta f}{\Delta x} \xrightarrow[\text { limit }]{\text { limit }} \frac{\text { list. }}{d x}
$$

$$
\left.f^{\prime}(x) \equiv \frac{d f}{d x}\right|^{\prime f} \text { prime" }
$$

EX 2 million liters of water are drained from a swimming pool a the volume

$$
-V(t)=2,000,000\left(1-\frac{t}{120}\right)^{2} l^{3}
$$

Q: what is the rate at which water is leaving cubed the pool at the 1 hr mark?
(i) we seek $\frac{\Delta \sqrt{0} l}{\Delta t} \xrightarrow{h \rightarrow 0} \frac{d V}{d t}$

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

(ii)

$$
\begin{aligned}
& \Delta V=V(t+h)-V(t) \\
& =2 \times 10^{6}\left(1-\frac{t+h}{120}\right)^{2}-2 \times 10^{6}\left(1-\frac{t}{120}\right)^{2} \\
& =2 \times 10^{6}\left[\left(1^{2}-2\left(\frac{t+h}{120}\right)+\frac{(t+h)^{2}}{120^{2}}\right)-\left(1-\frac{t}{120}\right)^{2}\right] \\
& =2 \times 10^{6}\left[\left(1-\frac{t}{60}-\frac{h}{60}+\frac{t^{2}+2 t h+h^{2}}{14400}\right)-\left(1-\frac{2 t}{120}+\frac{t^{2}}{14400}\right)\right] \\
& =2 \times 10^{6}\left[\gamma-\frac{t}{60}-\frac{h^{2}}{60}+\frac{t^{2} / 4}{4600}+\frac{2 t^{2}}{14400}+\frac{h^{2}}{14400}-\gamma+\frac{64}{60}-\frac{t^{6}}{6400}\right] \\
& \Delta V=2 \times 10^{6}\left[-\frac{h}{60}+\frac{2 t h}{14400}+\frac{h^{2}}{14400}\right] \\
& \frac{d V}{d t}=\lim _{h \rightarrow 0}\left[\frac{2 \times 10^{6}\left[-\frac{h}{60}+\frac{2 t h}{14400}+\frac{h^{2}}{14800}\right]}{h}\right] \\
& -\frac{d V}{d t}=2 \times 10^{6}\left[\frac{2 t}{14400}-\frac{1}{60}\right] \\
& V^{\prime}=\frac{2500}{9}(t-120) \quad\left(t=60 \min \frac{2500}{9}(60-120)\right. \\
& =-16666^{2} /{ }^{3} \mathrm{l} / \mathrm{ms}
\end{aligned}
$$

