1.8 Continuity

Def: $f(x)$ is continuous at "a" if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+1 & \text { for } x \neq 0 \\
0 & \text { for } x=0
\end{array}\right.
$$

graph:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=1 \\
& x \rightarrow 0^{-} \& x \rightarrow 0^{+} \text {same }
\end{aligned}
$$

But $\lim _{x \rightarrow 0} f(x)=1$ is not $\neq f(0)$ which is 0
This function is not continous
Proving Continuity involves three steps:
(a) $f(a)$ needs to be defined at $x=a$ \{ " a " is inf's domain\}
(b) $\lim _{x \rightarrow a} f(x)$ exist.
(c) $\lim _{x \rightarrow a} f(x)=f(a)$
part c) failed in the opening example.

Def: $f(x)$ is discontinuous at $x=a$ if $f(x)$ is not continuous @ $x=a$

* Types of Discontinuities
(i) "Removable": we can redefine a value of $f(x)$ at $x=a$ so that the LH approach is equality the right hand approach
a ka. "Hole discontinuity" \qquad
(ii) "Infinite" discon finuity:

These are locations when e avectical asymptote exisists.

(iii)"Jump"discontinuity:

$$
\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)
$$

(iv) "Gap"discontinuizy:
"A function is discontinuous if you need to"
lift your pencil while tracing the graph of the function"

EX Consider the piecewise function

$$
f(x)=\left\{\begin{array}{l}
3 / 2 \\
\begin{array}{ll}
1 / x^{2} & x<-1 \\
5 / 2 & x=1 \\
2 x-\frac{1}{2} & x \in(1,3 / 2) \cup(0,1) \\
2 x-\frac{1}{2} & x \in(3 / 2, \infty
\end{array}
\end{array}\right.
$$

Identify all discontinuities Graph

$$
\text { @ } x=-1 \text { : Jump }
$$

$@ x=0$: Infinite
($a x=1$: Jump
(a $x=\frac{3}{2}$: Hole \{remorable $\}$

* one-sided continuity

Def: $f(x)$ is continuow from the right at $x=a$ if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$

Def: $f(x)$ is continuous from the left (c) $x=a$ if

$$
\lim _{x \rightarrow a^{-}} f(x)=\frac{f(a) \prod_{a}^{a}}{\frac{a}{a}}
$$

Def: $f(x)$ is continuous on an interval if it is continuous at all interior point in the interval

If at a closed boundary at an edge of the interval AND
if $f(x)$ is one-sided continuous at that closed boundary then we include the boundary in the interval

Ex Step function

$$
g(x)=\mathbb{L} x{\underset{\imath}{\imath}}^{\square}
$$ value to the next lowest integer

- Consider $x \in[2,3)$

$$
\begin{aligned}
& g(x)=\llbracket x \rrbracket \\
& g(0.5)=\llbracket 0.5 \rrbracket \\
& =0 \\
& g(0)=\llbracket 00 \\
& \\
& =0 \\
& g(1)=\llbracket 1 \rrbracket=1 \\
& g(1.5)=\llbracket 1.5 \rrbracket=1
\end{aligned}
$$

$$
g(-1.5)=2
$$

$[\mid x \rrbracket$ is continuous from the right $b / c \lim _{x \rightarrow 2^{+}} \llbracket x \rrbracket=2$ itself.
but $\llbracket x \rrbracket$ is mot continuous from the left $b / c \lim _{x \rightarrow 2^{-}} \llbracket x \rrbracket \neq 2$ itself but rather is equal to 1
In general $\lim _{x \rightarrow 2} g(x)$ does not exist (DNE) since $\lim _{x \rightarrow 2^{-}} g(x) \neq \lim _{x \rightarrow 2^{+}} g(x)$
(Ex) Prove $f(x)=\left(\frac{x+1}{x-3}\right)$ is continuous

 boundary form gen

For all $a>3 \lim _{x \rightarrow a^{-}}\left(\frac{x+1}{x-3}\right)=\lim _{x \rightarrow a^{+}}\left(\frac{x+1}{x-3}\right)$
at the boundany, open, we can pushour "a" as close to 3 as we desire and always have $\lim _{x \rightarrow a^{-}}=\lim _{x \rightarrow a}$

(Ex) where is the functor

$$
f(x)=\frac{\sin ^{-1}(x)+\sqrt{x-1}}{\ln (x)} \text { continuous? }
$$

$\left(1^{s t}\right)$
domain of $\sin ^{-1}(x)$

domain of $\sqrt{x-1}$

howers we cannot include $x=1$ in the domain
$\left(2^{n}\right)$ of $f(x)$, above, since $\ln (1)=0$ \&

- We examine the intersection of all 3 pieces and we see that only $f(1)$ would be defined in the numerator and also in the denominator but since the denominer is zoo at $x=1$ we need to exclude that pointalso so...
Bottom Line: This function is continuous Nowhere!
BTW: had we multiplied then
$\left.\begin{array}{r}\left\{\left(\sin ^{-1}(x)+\sqrt{x-1}\right) * \ln (x) \text { exits at } x=1 \text {, but no where }\right. \\ \text { (it is not continuous there) else. }\end{array}\right\}$

If f and g are continuous at $x=a$ and if " c " is a constant then
$f+g, f-g$ fog, $\frac{f}{g}$, cf are all continuous at $x=a$ also $\{g(a) \neq 0\}$

EX: all polynomials are continuous on $(-\infty, \infty)$ all rational functions are continuous on $(-\infty, \infty)$ except where the denominator vanishes
In their respective domains \{where they ares defined $\}$ The following are continuous

- polynomials
- rational functions
- root functions $\sqrt[n]{()}$
- trig functions:
- inverse trig functions
- exponential functions
- logarithmic functions
- If $f(x)$ is conihuous at $x=b$ and if $\lim _{x \rightarrow a} g(x)=b$
the $\lim _{x \rightarrow a} f(g(x))=f(b)$
\{ composites af continuous outer functions\} ~ are continuous where defined

$$
f \circ g \equiv f(g(x))
$$

Then $\lim _{x \rightarrow a} f \circ g=f(b)$ where $g(a)=b$

- If g is continuous at $x=a$ and if f is continuous at $g(a)$ then the composite function $f \circ g$ is also continuous $@ x=a$
evaluate $\left.\lim _{x \rightarrow 4} \ln \left(\frac{x^{2}-16}{x-4}\right)\right)^{h}$
In pre-calc. chars we exclude $x=4$ from the domain in call.

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \ln \left(\frac{(x+4)(x-4)}{(x-4)}\right) \\
= & \left.\lim _{x \rightarrow 4} \ln _{x}(x+4)\right) g \\
= & \ln \left(\lim _{x \rightarrow 4} x+4\right) \\
= & \ln (4+4)=\ln (8)=3 \ln (2)
\end{aligned}
$$

Ex Where is $f(x)=\sqrt{\sin (x)}$ continuow ? de compose $h \circ g$

$$
\left\{\begin{array}{l}
h()=\sqrt{C)} \\
g(1)=\sin ()
\end{array}\right.
$$

- $\sin (x)$ $(-\infty, \infty)$

$$
\begin{gathered}
\cdot \sqrt{x} \\
{[0, \infty)}
\end{gathered}
$$

Together

- To becontinuons we need $f(a)$ defined and we need $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$
which is fine for all $x \geqslant 2 \pi k<x<(2 k+1) \pi$ for $k \in \mathbb{Z}\{$ integer : $-\ldots-2,-1,0,1,2, \ldots\}$
- However we can also include the boundaries since we have one-sided continuity Note

$$
2 \pi k \leqslant x \leqslant(2 k+1) \pi
$$ $2 k+1=$ odd alva

Intermediate Value Theorem
The: If $f(x)$ is continuous on the closed interval $[a, b]$
then for any number $N \in[f(a), f(b)]$
there exists a number " c " $\in[a, b]$ such that

$$
f(c)=N
$$

* Theorem Structure
- premise 1 \{conditions or constraints $\}$
- premise $2\{$
"imply" \longrightarrow_{Δ}
Logically \qquad

$$
\underbrace{\left(P_{1} \text { and } P_{2} \text { and } \cdots P_{n}\right.}_{\substack{\text { conditions } \\ \text { or } \\ \text { assumptions } \\(\text { Postulates) }}}) \rightarrow \text { conclusion }
$$

again but in "math speak"
I.V.Thm for f, C_{0} on $[a, b]$,

$$
\begin{aligned}
& \rightarrow \forall N \in[f(a), f(b)] \exists c \in[a, b] \\
& \rightarrow f(c)=N
\end{aligned}
$$

EX If $f(1)=-5$ and $f(3)=+5$ does there have to be an x in $[1,3]$ such that $f(x)=0$

pick
$N=0$
you must find me

$$
c \ni f(c)=0
$$

Q: before we involk the IVT is the condition (premise) met?
A: No mention of continuity! So I can lift my pen.

No ... we need not 2
have $f(x)=0$, h this intu'e $[1,3]$,

* office hours

$$
\begin{aligned}
& m=\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
& \lim _{v \rightarrow c^{-}}\left(\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}\right)
\end{aligned}
$$

As $\quad v \rightarrow C^{-}$then $\left(\frac{v}{c}\right) \rightarrow 1$ and $\sqrt{1-\frac{v}{c}} \rightarrow 0$
so the limit is ∞. "undefined"

$$
\operatorname{Dermos} \frac{1}{\sqrt{1-x^{2}}} \quad x \rightarrow 1^{-}
$$

$$
f(0.9), f(0.99), f(0.999) \ldots
$$

49. (a) Use numerical. (skip)
