7.1 Orthogonal Matrices **DEFINITION 1** A square matrix A is said to be *orthogonal* if its transpose is the same as its inverse, that is, if $$A^{-1} = A^{T}$$ or, equivalently, if $$AA^T = A^T A = I (1)$$ **THEOREM 7.1.1** The following are equivalent for an $n \times n$ matrix A. - (a) A is orthogonal. - (b) The row vectors of A form an orthonormal set in Rⁿ with the Euclidean inner product. - (c) The column vectors of A form an orthonormal set in Rⁿ with the Euclidean inner product. #### THEOREM 7.1.2 - (a) The transpose of an orthogonal matrix is orthogonal. - (b) The inverse of an orthogonal matrix is orthogonal. - (c) A product of orthogonal matrices is orthogonal. - (d) If A is orthogonal, then det(A) = 1 or det(A) = −1. **THEOREM 7.1.3** If A is an $n \times n$ matrix, then the following are equivalent. - (a) A is orthogonal. - (b) ||Ax|| = ||x|| for all x in Rⁿ. - (c) Ax · Ay = x · y for all x and y in Rⁿ. If A is an orthogonal matrix and T_A : $R^n \rightarrow R^n$ is multiplication by A, then we will call T_A an *orthogonal operator* on R^n . It follows from parts (a) and (b) of Theorem 7.1.3 that the orthogonal operators on R^n are precisely those operators that leave the lengths (norms) of vectors unchanged. However, this implies that orthogonal operators also leave angles and distances between vectors in R^n unchanged since these can be expressed in terms of norms **THEOREM 7.1.4** If S is an orthonormal basis for an n-dimensional inner product space V, and if $$(\mathbf{u})_S = (u_1, u_2, \dots, u_n)$$ and $(\mathbf{v})_S = (v_1, v_2, \dots, v_n)$ then: (a) $$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$ (b) $$d(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$ (c) $$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$ **THEOREM 7.1.5** Let V be a finite-dimensional inner product space. If P is the transition matrix from one orthonormal basis for V to another orthonormal basis for V, then P is an orthogonal matrix. $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ or, equivalently, $$x' = x \cos \theta + y \sin \theta$$ $$y' = -x \sin \theta + y \cos \theta$$ These are sometimes called the rotation equations for R^2 . #### Application to Rotation o fAxes in 3-Space $$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$ A linear operator on R^2 is called *rigid* if it does not change the lengths of vectors, and it is called *angle preserving* if it does not change the angle between nonzero vectors. ### 7.2 Orthogonal Diagonalization In this section we will be concerned with the problem of diagonalizing a symmetric matrix A. As we will see, this problem is closely related to that of finding an orthonormal basis for Rⁿ that consists of eigenvectors of A. Problems of this type are important because many of the matrices that arise in applications are symmetric. **DEFINITION 1** If A and B are square matrices, then we say that B is *orthogonally* similar to A if there is an orthogonal matrix P such that $B = P^{T}AP$. If A is orthogonally similar to some diagonal matrix, say $P^{T}AP = D$, then we say that A is orthogonally diagonalizable and that P orthogonally diagonalizes A $A^T = (PDP^T)^T = (P^T)^TD^TP^T = PDP^T = A$ so A must be symmetric if it is orthogonally diagonalizable. **THEOREM 7.2.1** If A is an $n \times n$ matrix with real entries, then the following are equivalent. - (a) A is orthogonally diagonalizable. - (b) A has an orthonormal set of n eigenvectors. - (c) A is symmetric. **THEOREM 7.2.2** If A is a symmetric matrix with real entries, then: - (a) The eigenvalues of A are all real numbers. - (b) Eigenvectors from different eigenspaces are orthogonal. # Orthogonally Diagonalizing an $n \times n$ Symmetric Matrix - Step 1. Find a basis for each eigenspace of A. - Step 2. Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal basis for each eigenspace. - Step 3. Form the matrix P whose columns are the vectors constructed in Step 2. This matrix will orthogonally diagonalize A, and the eigenvalues on the diagonal of $D = P^T A P$ will be in the same order as their corresponding eigenvectors in P. #### Spectral Decomposition If A is a symmetric matrix that is orthogonally diagonalized by $P = [\mathbf{u}_1 \, \mathbf{u}_2 \cdots \, \mathbf{u}_n]$ and if $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A corresponding to the unit eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$, then we know that $D = P^T A P$, where D is a diagonal matrix with the eigenvalues in the diagonal positions. $\mathbf{u}\mathbf{u}^T$ is the standard matrix for the orthogonal projection of R^n on the subspace spanned by the vector \mathbf{u} . $$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$ The spectral decomposition of A tells that the image of a vector \mathbf{x} under multiplication by a symmetric matrix A can be obtained by projecting \mathbf{x} orthogonally on the lines (one-dimensional subspaces) determined by the eigenvectors of A, then scaling those projections by the eigenvalues, and then adding the scaled projections. #### Schur decomposition of A #### THEOREM 7.2.3 Schur's Theorem If A is an $n \times n$ matrix with real entries and real eigenvalues, then there is an orthogonal matrix P such that P^TAP is an upper triangular matrix of the form $$P^{T}AP = \begin{bmatrix} \lambda_{1} & \times & \times & \cdots & \times \\ 0 & \lambda_{2} & \times & \cdots & \times \\ 0 & 0 & \lambda_{3} & \cdots & \times \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}$$ $$(11)$$ in which $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A repeated according to multiplicity. That is every square matrix A is orthogonally similar to an upper triangular matrix that has the eigenvalues of A on the main diagonal. $A = PSP^{T}$ which is called a **Schur decomposition of A** ## **Upper Hessenberg decomposition** #### THEOREM 7.2.4 Hessenberg's Theorem If A is an $n \times n$ matrix with real entries, then there is an orthogonal matrix P such that $P^{T}AP$ is a matrix of the form $$P^{T}AP = \begin{bmatrix} \times & \times & \cdots & \times & \times & \times \\ \times & \times & \cdots & \times & \times & \times \\ 0 & \times & \ddots & \times & \times & \times \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \times & \times & \times \\ 0 & 0 & \cdots & 0 & \times & \times \end{bmatrix}$$ (13) Every square matrix with real entries is orthogonally similar to a matrix in which each entry below the first *subdiagonal* is zero $A = PHP^{T}$ which is called an *upper Hessenberg decomposition* of A.