CHAPTER 6 Inner Product Spaces

6.1 Inner Products

DEFINITION 1 An inner product on a real vector space V is a function that associates
a real number (u, v) with each pair of vectors in V in such a way that the following
axioms are satisfied for all vectors u, v, and w in V and all scalars k.

1. (u,v) = (v,u) [ Symmetry axiom |
2. (u4v,w) = (u,w)+ (v,w) [Additivity axiom]
3. (ku,v) =k(u,v) [ Homogeneity axiom |

4. (v,v) > 0and (v,v) = 0if and only if v = 0 [Positivity axiom]

A real vector space with an inner product is called a real inner product space.

DEFINITION 2 If V is a real inner product space, then the norm (or length) of a vector
vin V is denoted by ||v|| and is defined by

Ivll = V(v v)

and the distance between two vectors is denoted by d(u, v) and is defined by
d(ll,V)="II—V"-:J(II—V,I.I-V) ’

A vector of norm 1 is called a unit vector.

THEOREM 6.1.1 If u and v are vectors in a real inner product space V, and if k is a
scalar, then:

(@) |Iv]l = O with equality if and only if v = 0.
(®) kvl = kllv]l.

(¢) d(u,v)=d(v,u).

(d) d(u,v) = 0 with equality if and only if u = v.

Wy, W, ..., W,
are positive real numbers, which we will call weights, and if u = (u;, u3, ..., u,) and
v= (v;, 1s,..., U,) are vectors in R", then it can be shown that the formula

(0, ¥) = wiu1v) + waltav2 + - - - + Wrlkp ¥y )

defines an inner product on R" that we call the weighted Euclidean inner product with
weights wy, wy, ..., W,.
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DEFINITION 3 If V is an inner product space, then the set of points in V that satisfy
lull =1
is called the unit sphere or sometimes the unit circle in V.

matrix inner products: if u - v is the Euclidean inner product on R", then the formula
(u, v) =Au - Av also defines an inner product. <u, v) = (AVTAu = v'ATAu

If u=U and v =V are matrices in the vector space Mnxn, then the formula <u, v) =tr(U'V)
defines an inner product on Mnxn called the standard inner product on that space

If are polynomials in Py, then the following formula defines an inner product on Py (verify)
that we will call the standard inner product on this space: {p,q>=aobo +aib1 +-*+anbn

» EXAMPLE 10 An Integral Inner Product on Cla, b]
Letf = f(x) and g = g(x) be two functions in C|a, b] and define

]
g = f f()8(x) dx (12)

We will show that this formula defines an inner product on Cla, b] by verifying the four
inner product axioms for functions f = f(x), g = g(x),and h = h(x) in Cla, b):

b b
Axiom 1I: (f.g)=/ S(x)g(x)dx =f g(x) f(x)dx = (g, 1)
a b a
Axiom2: (f+g.h) = / (f(x) + g(x))h(x)dx
b b
=/ f(x)h(x)dx+/ g(x)h(x)dx
= (f,h) + (g, h)
b b
Axiom 3: (kf, g) =[ kf(x)g(x)dx = k/ f(x)g(x)dx =k(f, g)
Axiom 4: If f = f(x) is any function in C[a, b], then
b
(f, 1) =/ fA(x)dx >0 (13)

since f2(x) > 0 for all x in the interval [a, b]. Moreover, because f is continuous on
[a, b], the equality in Formula (13) holds if and only if the function f is identically zero
on [a, b], that is, if and only if f = 0; and this proves that Axiom 4 holds.
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THEOREM 6.1.2 Ifu, v, and w are vectors in a real inner product space V, and if k is a
scalar, then:

(@ (0,v)=(v,0)=0

(b) (u,v+w) = (uv)+ (u,w
(¢) (u,v—w)=(u,v)— (u,w
d) (u—v,w)=(u,w—(v,w)
(e) k(u,v) = (u,kv)

6.2 Angle and Orthogonality in Inner Product Spaces

Recall from Formula (20) of Section 3.2 that the angle 6 between two vectors u and v in

R" is
6 = B ( ol ) 1
5\ univi M

We were assured that this formula was valid because it followed from the Cauchy-
Schwarz inequality (Theorem 3.2.4) that

u-v
<1 (2)
lalllivi
as required for the inverse cosine to be defined. The following generalization of the
Cauchy-Schwarz inequality will enable us to define the angle between two vectors in any
real inner product space.

_15

THEOREM 6.2.1 Cauchy-Schwarz Inequality
Ifu and v are vectors in a real inner product space V, then

[(u, V)| < flulflvli 3)

(Figure 6.2.1). This enables us to define the angle 6 between u and v to be
-1 [ (u,v)
6 = cos™’ (—)
lalf vl

THEOREM 6.2.2 If u, v, and w are vectors in a real inner product space V, and if k is
any scalar, then:

(@ Jlu+ vl < [lull + [Ivl | Triangle inequality for vectors)
(b) d(u,v) <d(u,w)+d(w,v) |[Triangle inequality for distances]
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DEFINITION 1 Two vectors u and v in an inner product space V called orthogonal if
{(u,v) =0.

THEOREM 6.2.3 Generalized Theorem of Pythagoras
If u and v are orthogonal vectors in a real inner product space, then

llu+vI? = [lull® + Iv?

DEFINITION 2 If W is a subspace of a real inner product space V, then the set of
all vectors in V that are orthogonal to every vector in W is called the orthogonal
complement of W and is denoted by the symbol W+,

THEOREM 6.2.4 If W is a subspace of a real inner product space V, then:

(@) W+ is a subspace of V.
b WnNW+={0}.

P EXAMPLE 6 Basis for an Orthogonal Complement
Let W be the subspace of R® spanned by the vectors
w =(1,3,-2,0,2,0), w=(26 -5 -2,4,-3),
wy =(0,0,5100,15), ws=(2,6,084,18)
Find a basis for the orthogonal complement of W.
Solution The subspace W is the same as the row space of the matrix
1 3 -2 0 2 0O
2 6 -5 -2 4 -3
0O 0 5 10 0 15
2 6 0 8 4 18

Since the row space and null space of A are orthogonal complements, our problem
reduces to finding a basis for the null space of this matrix. In Example 4 of Section 4.7
we showed that

Am

-3 -4 -
1 0

VI =

o e e
S -0 00

form a basis for this null space. Expressing these vectors in comma-delimited form (to
match that of wy, w;, wy, and wy), we obtain the basis vectors

v =(-310000), v;=(-4,0-2100)), v =(-200010)

You may want to check that these vectors are orthogonal to wy, w;, w;, and w, by
computing the necessary dot products. <
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6.3 Gram-Schmidt Process; QR-Decomposition

DEFINITION 1 A set of two or more vectors in a real inner product space is said to be
orthogonal if all pairs of distinct vectors in the set are orthogonal. An orthogonal set
in which each vector has norm 1 is said to be orthonormal.

THEOREM 6.3.1 If S = {vy, V2, ..., V,} is an orthogonal set of nonzero vectors in an
inner product space, then S is linearly independent.

THEOREM 6.3.2
(@) If S = {v,,vs,...,V,} is an orthogonal basis for an inner product space V, and if
u is any vector in V, then

(ll. Vl) (ll, VZ)V R & My (3)
: Ivallz ™

(b) If S = {vi, v2,...,Vy} is an orthonormal basis for an inner product space V, and
if u is any vector in V, then

u= (u,v)vy+ (u, va)va + -« 4+ (u, v, ) v, (4)

Using the terminology and notation from Definition 2 of Section 4.4, it follows from
Theorem 6.3.2 that the coordinate vector of a vector u in V relative to an orthogonal

basis § = {v;,vy,...,V,} 18
(“0 'l) (“- "2) ('- Vn))
— . e 6
L ( TR T A TA ©
and relative to an orthonormal basis § = {v;, v3, ..., V,} 18
('l)s = ((“' 'l)t (“' '2)' ey (n' Vl)) (7)

THEOREM 6.3.3 Projection Theorem

If W is a finite-dimensional subspace of an inner product space V, then every vector u
in V can be expressed in exactly one way as

u=w +w (8)

where w, is in W and w, is in W*.
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These are called the orthogonal projection of u on W and the orthogomal projection of u
- on W, respectively. The vector w; is also called the component of u orthogonal to W,
l g Using the notation in (9), Formula (8) can be expressed as

U = Projy 8+ Projy. u (10)

(Figure 6.3.1). Moreover, since projy . = u — Projy u, we can also express Formula
- (10) as
0 prog,u

U = projy U + (4 — projy u) ()
A Figure 8.2.1

THEOREM 6.3.4 Let W be a finite-dimensional subspace of an inner product space V.
(@) If{vi,va,...,V.} isan orthogonal basis for W, and u is any vector in V, then
(u, v)) (u, v2) (u, v,)

rojw u = v + Lo i = v 12
Projw 8= v " * e TR 12
(b) If{vy,va,...,V,} is an orthonormal basis for W, and u is any vector in V, then
ijw u= (ll, V] )'l ar (u' '2)'2 Sflatuluteg (no Vr)'r (13)
u
i
/j// |
pmj"n // 7 '2
~
S |
g i _>éproju -
/ ”’/
projy us,
"1

> Figure 6.3.2

THEOREM 6.3.5 Every nonzero finite-dimensional inner product space has an ortho-
normal basis.
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The Gram—-Schmidt Process

To convert a basis {u;, u,, ..., u,} into an orthogonal basis {v, v,, ..., v,}, perform
the following computations:

Step 1. v, = u,
(w2, vy)
Step 2. vy =y — v
el T A
(a3, vy) {us, v2)

Step3. vi=wmy — ————vV) — ———
lIvali? lIv2ll

(ug, vy) {ug, v2) L {ug, v3)

Step 4. vq = uy — v, - Y
v |I2 vz lIvsli?

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis
{9;,9,,...,q,}, normalize the orthogonal basis vectors.

Assume that the vector space R* has the Euclidean inner product. Apply the Gram-
Schmidt process to transform the basis vectors

w=011, u=(011), u=(0,01

into an orthogonal basis {v;, v3, v3}, and then normalize the orthogonal basis vectors to
obtain an orthonormal basis {q,, q,, q;}.

Solution
Stepl. v, =w = (1, 1, 1)
. uy, v
Step 2. v; = w; — projy, ; = w; — (“:'—";)VI
2 211
= -Ivl —-l.l.l= =t Wi i
© ) 3( ) ( 33 3)

N s (u3, vp) (u3, v2)

Step 3. v3 = uy — projy, uy = uy — e el 2

=(0.0.l)—%(l.l.l)—'—/3( 4. l)

2/3\ 333
11
-(4-33)

7 1 |
V] -(lo lo l)o V;x (_50 So

Thus,

W |

)=o)
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THEOREM 6.3.6 If W is a finite-dimensional inner product space, then:

(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal
basis for W.

(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W.

THEOREM 6.3.7 QR-Decomposition

If A is an m x n matrix with linearly independent column vectors, then A can be fac-
tored as

A= QR

where Q is an m x n matrix with orthonormal column vectors, and R is an n X n
invertible upper triangular matrix.

It follows from Theorem 6.3.7 that every invertible matrix has a QR-decomposition.

Find a QR-decomposition of

Applying the Gram-Schmidt process with normalization to these column vectors yields
the orthonormal vectors (see Example 8)

51 [# o
a=|%| «=| %| o=|-%
5 ;'4 5
Thus, it follows from Formula (16) that R is
(w,q) (w,q) (o,q) v R R
R=[ 0 (mq) m.«m]- ° % %
0 0 (w3, qy) 0 0 ‘_15
from which it follows that a QR-decomposition of A is
100 3"k O[5 5 &
PP s & Kllo o



