5.1 Eigenvalues and Eigenvectors

DEFINITION 1 If A is an $n \times n$ matrix, then a nonzero vector x in \mathbb{R}^n is called an *eigenvector* of A (or of the matrix operator T_A) if Ax is a scalar multiple of x; that is,

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ . The scalar λ is called an *eigenvalue* of A (or of T_A), and \mathbf{x} is said to be an *eigenvector corresponding to* λ .

THEOREM 5.1.1 If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation

$$\det(\lambda I - A) = 0 \tag{1}$$

This is called the characteristic equation of A.

THEOREM 5.1.2 If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

THEOREM 5.1.3 If A is an $n \times n$ matrix, the following statements are equivalent.

- (a) λ is an eigenvalue of A.
- (b) λ is a solution of the characteristic equation $\det(\lambda I A) = 0$.
- (c) The system of equations $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions.
- (d) There is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$.

Notice that x = 0 is in every eigenspace but is not an eigen- vector (see Definition 1). In the exercises we will ask you to show that this is the only vector that distinct eigenspaces have in common.

THEOREM 5.1.4 A square matrix A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

THEOREM 5.1.5 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row echelon form of A is In.
- (d) A is expressible as a product of elementary matrices.
- (e) Ax = b is consistent for every n × 1 matrix b.
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $\det(A) \neq 0$.
- (h) The column vectors of A are distinct and linearly independent.
- (i) The row vectors of A are distinct and linearly independent.
- The column vectors of A span Rⁿ.
- (k) The row vectors of A span Rⁿ.
- The column vectors of A form a basis for Rⁿ.
- (m) The row vectors of A form a basis for Rⁿ.
- (n) A has rank n.
- (o) A has nullity 0.
- (p) The orthogonal complement of the null space of A is Rⁿ.
- (q) The orthogonal complement of the row space of A is {0}.
- (r) The kernel of T_A is {0}.
- (s) The range of T_A is R^n .
- T_A is one-to-one.
- (u) $\lambda = 0$ is not an eigenvalue of A.

DEFINITION 2 If $T: V \to V$ is a linear operator on a vector space V, then a nonzero vector \mathbf{x} in V is called an *eigenvector* of T if $T(\mathbf{x})$ is a scalar multiple of \mathbf{x} ; that is,

$$T(\mathbf{x}) = \lambda \mathbf{x}$$

for some scalar λ . The scalar λ is called an *eigenvalue* of T, and x is said to be an *eigenvector corresponding to* λ .

If $D: C^{\infty} \to C^{\infty}$ is the differentiation operator on the vector space of functions with continuous derivatives of all orders on the interval $(-\infty, \infty)$, and if λ is a constant, then

$$D(e^{\lambda x}) = \lambda e^{\lambda x}$$

so that λ is an eigenvalue of D and $e^{\lambda x}$ is a corresponding eigenvector.

In vector spaces of functions eigenvectors are commonly re-ferred to as eigenfunctions

The eigenvectors that we have been studying are sometimes called right eigenvectors to distinguish them from left eigen- vectors, which are $n \times 1$ column matrices x that satisfy the equation $xTA = \mu xT$ for some scalar μ .

5.2 Diagonalization

Consider A and P, $\,$ n \times n matrices, and P is invertible, such that

the matrix A is mapped into the matrix P⁻¹AP are called **similarity transformations**.

If we let B = P - 1AP, then A and B have the same determinant:

$$det(B) = det(P^{-1}AP) = det(P^{-1}) det(A) det(P)$$
$$= \frac{1}{det(P)} det(A) det(P) = det(A)$$

Any property that is preserved by a similarity transformation is called a **similarity invariant** and is said to be *invariant under similarity*.

Table 1 Similarity Invariants

Property	Description
Determinant	A and $P^{-1}AP$ have the same determinant.
Invertibility	A is invertible if and only if $P^{-1}AP$ is invertible.
Rank	A and $P^{-1}AP$ have the same rank.
Nullity	A and $P^{-1}AP$ have the same nullity.
Trace	A and $P^{-1}AP$ have the same trace.
Characteristic polynomial	A and $P^{-1}AP$ have the same characteristic polynomial.
Eigenvalues	A and $P^{-1}AP$ have the same eigenvalues.
Eigenspace dimension	If λ is an eigenvalue of A (and hence of $P^{-1}AP$) then the eigenspace of A corresponding to λ and the eigenspace of $P^{-1}AP$ corresponding to λ have the same dimension.

DEFINITION 1 If A and B are square matrices, then we say that B is similar to A if there is an invertible matrix P such that $B = P^{-1}AP$.

DEFINITION 2 A square matrix A is said to be **diagonalizable** if it is similar to some diagonal matrix; that is, if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal. In this case the matrix P is said to **diagonalize** A.

THEOREM 5.2.1 If A is an $n \times n$ matrix, the following statements are equivalent.

- (a) A is diagonalizable.
- (b) A has n linearly independent eigenvectors.

THEOREM 5.2.2

- (a) If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct eigenvalues of a matrix A, and if $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are corresponding eigenvectors, then $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$ is a linearly independent set.
- (b) An n × n matrix with n distinct eigenvalues is diagonalizable.

A Procedure for Diagonalizing an $n \times n$ Matrix

- Step 1. Determine first whether the matrix is actually diagonalizable by searching for n linearly independent eigenvectors. One way to do this is to find a basis for each eigenspace and count the total number of vectors obtained. If there is a total of n vectors, then the matrix is diagonalizable, and if the total is less than n, then it is not.
- Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$ whose column vectors are the *n* basis vectors you obtained in Step 1.
- Step 3. $P^{-1}AP$ will be a diagonal matrix whose successive diagonal entries are the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ that correspond to the successive columns of P.

If you are concerned only in determining whether a matrix is diagonalizable and not with actually finding a diagonalizing matrix P, then it is not necessary to compute bases for the eigenspaces — it suffices to find the dimensions of the eigenspaces. if it has n distinct eigenvalues.

THEOREM 5.2.3 If k is a positive integer, λ is an eigenvalue of a matrix A, and x is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and x is a corresponding eigenvector.

The problem of computing powers of a matrix is greatly simplified when the matrix is diagonalizable.

 $(P^{-1}AP)2 = P^{-1}APP^{-1}AP = P^{-1}AIAP = P^{-1}A^2P$ from which we obtain the relationship $P^{-1}A^2P = D^2$. More generally

$$P^{-1}A^kP = D^k = \begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{bmatrix}$$

$$A^k = P D^k P^{-1}$$

Theorem 5.2.2(b) does not completely settle the diagonalizability question since it only guarantees that a square matrix with n distinct eigenvalues is diagonalizable; it does not preclude the possibility that there may exist diagonalizable matrices with fewer than n distinct eigenvalues.

If λ_0 is an eigenvalue of A, then the dimension of the eigenspace corresponding to λ_0 cannot exceed the multiplicity of λ_0 as a factor of the characteristic polynomial of A.

If λ_0 is an eigenvalue of an $n \times n$ matrix A, then the dimension of the eigenspace corresponding to λ_0 is called the **geometric multiplicity** of λ_0 , and the number of times that $\lambda - \lambda_0$ appears as a factor in the characteristic polynomial of A is called the **algebraic multiplicity** of λ_0 .

THEOREM 5.2.4 Geometric and Algebraic Multiplicity

If A is a square matrix, then:

- (a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.
- (b) A is diagonalizable if and only if the characteristic polynomial of A is factorable into linear terms and the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity.