Ch 4 Theorems and Definitions Vector Spaces

4.1 Vector space axioms

DEFINITION 1 Let V be an arbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by numbers called scalars. By addition we
mean a rule for associating with each pair of objects u and v in V an object u + v,
called the sum of u and v; by scalar multiplication we mean a rule for associating with
each scalar k and each object uin V an object ku, called the scalar multiple of u by k.
If the following axioms are satisfied by all objects u, v, w in V and all scalars k and
m, then we call V a vector space and we call the objects in V vectors.
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1. Ifuand vareobjectsin V, thenu+visin V.

2. ut+v=v+u

3.

4. Thereis an object 0in V, called a zero vector for V, suchthat0 +u=u+0=u

u+(v+w =Uu+v)+w

foralluin V.

For each u in V, there is an object —u in V, called a negative of u, such that
u+(—u)=(-u)+u=0.

If k is any scalar and u is any object in V, then kuisin V.

k(u+v) = ku+ kv

(k +m)u = ku + mu

k(mu) = (km)(u)

THEOREM 4.1.1 Let V be a vector space, u a vector in V, and k a scalar; then:

(@ Ou=0
b)) k0=0
() (=Du=—u

(d) Ifku=0, thenk =0o0ru=0.
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4.2 Subspaces

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself
a vector space under the addition and scalar multiplication defined on V.

THEOREM 4.2.1 If W is a nonempty set of vectors in a vector space V, then W is a
subspace of V if and only if the following conditions are satisfied.

(@) If wandv are vectorsin W, thenu+visin W.
(b) If k is a scalar and u is a vector in W, then ku is in W.

THEOREM 4.2.2 If W), Wy, ..., W, are subspaces of a vector space V, then the inter-
section of these subspaces is also a subspace of V.

DEFINITION 2 If w is a vector in a vector space V, then w is said to be a linear
combination of the vectors vy, v2, ..., v, in V if w can be expressed in the form

w=kvi+kv+--+kv, (2)

where ky, k3, . .., k, are scalars. These scalars are called the coefficients of the linear
combination.

THEOREM 4.2.3 If S = {w|, Wy, ..., W, ) is a nonempty set of vectors in a vector space
V, then:

(@) The set W of all possible linear combinations of the vectors in S is a subspace of V.

(b) Theset W in part (a) is the “smallest” subspace of V that contains all of the vectors
in S in the sense that any other subspace that contains those vectors contains W.

' DEFINITION 3 If S = {w;, w2, ..., W, } is a nonempty set of vectors in a vector space
V, then the subspace W of V that consists of all possible linear combinations of the
vectors in S is called the subspace of V generated by S, and we say that the vectors
Wi, W2, ..., W, span W. We denote this subspace as

W = span{w;,wy,...,w,} or W = span(S)
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THEOREM 4.2.4 The solution set of a homogeneous linear system Ax = 0 of m equa-
tions in n unknowns is a subspace of R".

THEOREM 4.25 IfAisanm X n matrix, then the kernel of the matrix transformation
T4: R" — R™ is a subspace of R".

THEOREM 4.26 IfS = {v;,v2,...,V,}and S’ = {w,, W, ..., Wi} are nonempty sets
of vectors in a vector space V, then

span{vy, va, ..., V. } = span{w;, wa, ..., W}

if and only if each vector in S is a linear combination of those in S', and each vector in
S’ is a linear combination of those in S.

4.3 Linear Dependence and Independence

DEFINITION 1 If § = {v;, v2, ..., ¥, } is a set of two or more vectors in a vector space
V, then § is said to be a linearly independent set if no vector in S can be expressed as
a linear combination of the others. A set that is not linearly independent is said to be
linearly dependent.

THEOREM 4.3.1 A nonempty set S = {vy,Va,...,V,} in a vector space V is linearly
independent if and only if the only coefficients satisfying the vector equation

kivi+kva+-o-+ kv, =0
areky =0,k =0,...,k =0.

THEOREM 4.3.2
(a) A finite set that contains 0 is linearly dependent.

(b) A set with exactly one vector is linearly independent if and only if that vector is
not 0.

(¢) A set with exactly two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other.
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THEOREM 4.3.3 Let S = {vy,V2,...,V, ) beasetof vectorsin R". If r > n, then S is
linearly dependent.

DEFINITION 2 If f; = fi(x),f; = fa(x),...,fn = fa(x) are functions that are
n — 1 times differentiable on the interval (—2, =), then the determinant

fi(x) f(x) oo fa(x)
fix) f(x) v fr(x)
" B = e
is called the Wronskian of f,, f>, ..., fa.

Wi(x) =

THEOREM 4.3.4 If the functions f,,f;,...,f, have n—1 continuous derivatives
on the interval (=00, 00), and if the Wronskian of these functions is not identically
zero on (—00, 00), then these functions form a linearly independent set of vectors in
C"=D(—00, ).

4.4 Coordinates and Basis

DEFINITION 1 If S = {v;, v3, ..., ¥, } is a set of vectors in a finite-dimensional vector
space V, then S is called a basis for V if:

(a) Sspans V.
(b) S is linearly independent.

THEOREM 4.4.7 Uniqueness of Basis Representation

If § = {vy, va,...,V,} is a basis for a vector space V, then every vector v in V can be
expressed in the form v = ¢;vy + €2v2 + - - - + €y ¥y in exactly one way.
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DEFINITION 2 If S = {v;, v3,..., ¥,) is a basis for a vector space V, and
V=C|Vi+ Va4 4 CpVp

is the expression for a vector v in terms of the basis S, then the scalars ¢y, ¢, ..., ¢,

are called the coordinates of v relative to the basis S. The vector (¢, ¢3,...,¢,) In R"

constructed from these coordinates is called the coordinate vector of v relative to S it
" is denoted by

(Vs =(c1,€2,...,Cn) (6)

4.5 Dimension

THEOREM 4.5.1 All bases for a finite-dimensional vector space have the same number
of vectors.

THEOREM 4.5.2 Let V be a finite-dimensional vector space, and let {vy, V3, ..., v,} be
any basis.

(@) If asetin V has more than n vectors, then it is linearly dependent.

(b) If asetinV has fewer than n vectors, then it does not span V.

DEFINITION 1 The dimension of a finite-dimensional vector space V is denoted by
dim(V) and is defined to be the number of vectors in a basis for V. In addition, the
zero vector space is defined to have dimension zero.

THEOREM 4.5.3 Plus/Minus Theorem
Let S be a nonempty set of vectors in a vector space V.
(@) If S is a linearly independent set, and if v is a vector in V that is outside of

span(S), then the set S'U|v} that results by inserting v into S is still linearly
independent.

(b) Ifvis a vector in S that is expressible as a linear combination of other vectors
in S, and if S — {v} denotes the set obtained by removing v from S, then S and
S — {v} span the same space; that is,

span(S) = span(S — {v})
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THEOREM 454 Let V be an n-dimensional vector space, and let S be a set in V

with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly
independent.

THEOREM 4.5.5 Let S be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.

THEOREM 4.5.6 If W is a subspace of a finite-dimensional vector space V, then:
(a) W is finite-dimensional.

() dim(W) < dim(V).

(¢) W =V ifandonly if dim(W) = dim(V).

4.6 Change of Basis

The Change-of-Basis Problem If v is a vector in a finite-dimensional vector space V,
and if we change the basis for V from a basis B to a basis B’, how are the coordinate
vectors [v]g and [v]p related?

Solution of the Change-of-Basis Problem If we change the basis for a vector space V
from an old basis B = {u, u, ..., u,} to a new basis B = {u}, v}, ..., u;}, then for
each vector v in V, the old coordinate vector [v]z is related to the new coordinate
vector [v] g- by the equation

[vls = Plvlp (7
where the columns of P are the coordinate vectors of the new basis vectors relative
to the old basis; that is, the column vectors of P are

[ulllﬂ’ [“'2]80 ey [",]B (8)

The columns of the transition matrix from an old basis to a new basis are the coordinate
vectors of the old basis relative to the new basis.
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(¥lg = Pp—plv]lp

[¥lp = Pgp[vlp

THEOREM 4.6.1 If P is the transition matrix from a basis B to a basis B for a finite-
dimensional vector space V, then P is invertible and P~ is the transition matrix from
BtoB'.

A Procedure for Computing Transition Matrices

Step 1. Form the partitioned matrix [new basis | old basis] in which the basis vectors
are in column form.

Step 2. Use elementary row operations to reduce the matrix in Step 1 to reduced row
echelon form.

Step 3. The resulting matrix will be [/ | transition matrix from old to new] where 7 is
an identity matrix.
Step 4. Extract the matrix on the right side of the matrix obtained in Step 3.

[new basis | old basis] " 39" 7| transition from old to new]

THEOREM 4.6.2 Let B' = {uy, wy, ..., u,} be any basis for the vector space R" and
let S = {e}, ey, ...,e,} be the standard basis for R". If the vectors in these bases are
written in column form, then

Ppos=[u|uz| -+ |ug] (15)
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4.7 Row Space, Column Space, and Null Space

DEFINITION 1 For an m x n matrix

an @ -+ e
an ayp v Gy

A=) .
e Gy v Gue

the vectors

ne=[ay ap - aul
n=lay anp --- aul
T = [ay) On ' a-‘ll

in B* that are formed from the rows of A are called the row vectors of A, and the

an a2 Gle

an an @2e
=) . » = « [recer G .

Qmi G2 Gme

in R™ formed from the columns of A are called the columan vectors of A.

DEFINITION 2 If A is an m x n matrix, then the subspace of R" spanned by the
row vectors of A is called the row space of A, and the subspace of R™ spanned by
the column vectors of A is called the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which is a subspace of R", is called the
null space of A.

The vector xo in Formula (3) is called a particular solution of Ax = b, and the remaining
part of the formula is called the general solution of Ax = 0.

THEOREM 4.7.1 A system of linear equations AX = b is consistent if and only if b is in
the column space of A.

THEOREM 4.7.2 If xq is any solution of a consistent linear system AXx = b, and if
S = {vy, v2, ..., Vi) is a basis for the null space of A, then every solution of Ax = b can
be expressed in the form

X=Xo+C1Vi +C2v2 + -+ Vi (3)

Conversely, for all choices of scalars ¢y, ¢y, ..., Ck, the vector X in this formula is a
solution of Ax = b.

The general solution of a consistent linear system can be expressed as the sum of a partic-
ular solution of that system and the general solution of the corresponding homogeneous
system.
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THEOREM 4.7.3 Elementary row operations do not change the null space of a matrix.

THEOREM 4.7.4 Elementary row operations do not change the row space of a matrix.

THEOREM 4.75 If a matrix R is in row echelon form, then the row vectors with the
leading 1's (the nonzero row vectors) form a basis for the row space of R, and the column
vectors with the leading 1's of the row vectors form a basis for the column space of R.

THEOREM 4.7.6 If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if the corre-
sponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for the column space of A if and

only if the corresponding column vectors of B form a basis for the column space
of B.

Problem Given a set of vectors S = {v|,v2,..., ¥} in R", find a subset of these
vectors that forms a basis for span(S), and express each vector that is not in that basis
as a linear combination of the basis vectors.

Basis for the Space Spanned by a Set of Vectors

Step 1. Formthe matrix A whose columns are the vectorsintheset S = {v;, va, ..., %}.
Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by wy, wy, ..., Wg.

Step 4. 1dentify the columns of R that contain the leading I's. The corresponding
column vectors of A form a basis for span(S).

This completes the first part of the problem.

Step 5. Obtain a set of dependency equations for the column vectors wy, wy, ..., Wi
of R by successively expressing each w; that does not contain a leading 1 of
R as a linear combination of predecessors that do.

Step 6. In each dependency equation obtained in Step 5, replace the vector w; by the
vectorv; fori=1,2,...,k.

This completes the second part of the problem.
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4.8 Rank, Nullity, and the Fundamental Matrix Spaces

THEOREM 4.8.1 The row space and the column space of a matrix A have the same
dimension.

Thus, if R is any row echelon form of A, it must be true that:

dim(row space of A) = dim(row space of R)
dim(column space of A) = dim(column space of R)

—

DEFINITION 1 The common dimension of the row space and column space of a
matrix A is called the rank of A and is denoted by rank(A); the dimension of the null
space of A is called the nullity of A and is denoted by nullity(A).

THEOREM 4.8.2 Dimension Theorem for Matrices
If A is a matrix with n columns, then

rank(A) + nullity(A) = n (4

Proof Since A has n columns, the homogeneous linear system Ax = 0 has n unknowns
(variables). These fall into two distinct categories: the leading variables and the free
variables. Thus,

number of leading . number of free
variables variables

But the number of leading variables is the same as the number of leading 1’s in any row
echelon form of A, which is the same as the dimension of the row space of A, which is
the same as the rank of A. Also, the number of free variables in the general solution of
Ax = 0 is the same as the number of parameters in that solution, which is the same as
the dimension of the solution space of Ax = 0, which is the same as the nullity of A.

THEOREM 4.8.3 If A isanm x n matrix, then
(a) rank(A) = the number of leading variables in the general solution of Ax = 0.
(b) nullity(A) = the number of parameters in the general solution of Ax = 0.
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THEOREM 4.8.4 If Ax = b is a consistent linear system of m equations in n unknowns,
and if A has rank r, then the general solution of the system contains n — r paramelers.

There are six important vector spaces associated with a matrix A and its transpose A7 :

row space of A row space of AT
column space of A column space of AT
null space of A null space of A7

THEOREM 4.8.5 If A is any matrix, then rank(A) = rank(AT).

rank(A) + nullity(A”) = m (5)

This alternative form of Formula (4) makes it possible to express the dimensions of all

four fundamental spaces in terms of the size and rank of A. Specifically, if rank(A) = r,
then

dim[row(A)] =r dim[col(A)] = r ©
dim[null(A)] =n —r dim[null(AT)]=m —r

DEFINITION 2 If W is a subspace of R", then the set of all vectors in R" that are

orthogonal to every vector in W is called the orthogonal complement of W and is
denoted by the symbol W+.

THEOREM 4.8.6 If W is a subspace of R", then:
(@) W+ is a subspace of R".

(b) The only vector common to W and W is 0.
(¢) The orthogonal complement of W* is W.
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THEOREM 4.8.7 If A isanm X n matrix, then:

(@) The null space of A and the row space of A are orthogonal complements in R".
(b) The null space of AT and the column space of A are orthogonal complements in R™.

THEOREM 4.8.8 Equivalent Statements

If A is ann x n matrix, then the following statements are equivalent.
(@) A is invertible.

(b) Ax = 0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,.

(d) A is expressible as a product of elementary matrices.

() Ax = b is consistent for every n x |1 matrix b.

(f) Ax = b has exactly one solution for every n x | matrix b.

(g) det(A) #0.

(h) The column vectors of A are distinct and linearly independent.
(i)  The row vectors of A are distinct and linearly independent.
(/) The column vectors of A span R".

(k) The row vectors of A span R".

(!) The column vectors of A form a basis for R".

(m) The row vectors of A form a basis for R".

(n) A has rank n.

(0) A has nullity 0.

(p) The orthogonal complement of the null space of A is R".

(q) The orthogonal complement of the row space of A is {0}.

THEOREM 4.8.9 Let A be anm X n matrix.

(a) (Overdetermined Case). If m > n, then the linear system AX = b is inconsistent
Jor at least one vector b in R".

(b) (Underdetermined Case). If m < n, then for each vector b in R™ the linear system
Ax = b is either inconsistent or has infinitely many solutions.



