Ch 03 Linear Algebra, Anton Euclidean Vector Spaces

3.1 Vectors in 2-Space, 3-Space, and n-Space

DEFINITION 3 Ifv= (v, v2,...,v,) and w = (w;, w», ..., w,) are vectors in
and if k is any scalar, then we define

viw= (U +tw,n+w,..., 0+ w,)

kv = (kvy, kvy, ..., kv,)

—v=(—vy, —V2,...,—0V)

W—v=w+(—vV)=(w) —v,ws — V3, ..., W, —Vy)

THEOREM 3.1.1 If u,v, and w are vectors in R", and if k and m are scalars, then:
(@ u+v=v+u

b)) (@+vV+w=u+(v+w)

(¢) u+0=0+u=u

d) ut+(—u)=0

(e) k(u-+v)=ku+kv

(f) (k+m)u=ku+ mu

(g) k(mu) = (km)u

(h) lu=nu

THEOREM 3.1.2 If visa vector in R" and k is a scalar, then:

(@ Ov=0
() k0=0
() (-Dv=—v

R, |

(10)
(11)
(12)
(13)

DEFINITION 4 If wis a vector in R", then w is said to be a linear combination of the

vectors vy, v2, ..., v, in R" if it can be expressed in the form
w=kvi+kwvy+---+ kv, (14)
where &y, k;, . .., k, are scalars. These scalars are called the coefficients of the linear

- combination. In the case where r = 1, Formula (14) becomes w = k;v;, so that a

linear combination of a single vector is just a scalar multiple of that vector.
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3.2 Norm of a Vector Norm, Dot Product, and Distance in Rn

DEFINITION 1 Ifv = (v, v3, ..., v,) isa vector in R", then the norm of v (also called
the length of v or the magnitude of v) is denoted by ||v||, and is defined by the formula

IVl = Vo2 + 02 + - - - + 02 3) |

THEOREM 3.2.1 Ifvisavector in R", and if k is any scalar, then:

(@ |vll=0

(b) |lvll =0ifandonlyifv=0

(© kvl = |k|llvll

DEFINITION2 Ifu= (u;,u3,...,up)andv = (v, vy, ..., v,) arepointsin R", then

we denote the distance between u and v by d(u, v) and define it to be
dw,v) = lu—vll = v —v)2+ @ — )+ + W —v)2 (11

DEFINITION 3 Ifuand vare nonzero vectors in R? or R?, and if 6 is the angle between
u and v, then the dot product (also called the Euclidean inner product) of u and v is
denoted by u - v and is defined as

u-v=ulf[v|]cos @ (12)
Ifu=0orv =0, then we defineu - vto be0.

DEFINITION4 Ifu = (u;,u3,...,u,)andv = (v;, va, ..., v,)arevectorsin R", then
the dot product (also called the Euclidean inner product) of u and v is denoted by u - v
and is defined by

U-v=uv;+uwy+--+ u,v, (17)
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THEOREM 3.2.2 Ifw,v, and w are vectors in R", and if k is a scalar, then:

(@ u-v=v-u [Symmetry property|
b)) u-(v+w =u-v+u-w [ Distributive property|
(¢) k(u-v)=(ku)-v [ Homogeneity property|

(d) vev>0andv-v=0ifandonlyifv=0 [Positivity property]

THEOREM 3.2.4 Cauchy-Schwarz Inequality
Ifu= (u,uz,...,u,) andv = (vy, va, ..., v,) are vectors in R", then
lu-v| < [lafllv] (22)
or in terms of components
oy + w0 + -+ A U] < @G A U3+ +u) 2] F V] 4+ 0D

(23)
THEOREM 3.2.6 Parallelogram Equation for Vectors
If u and v are vectors in R", then
lla+ vI|? + [l — vi|* = 2 (||lul® + [IvII?) (24)

THEOREM 3.2.7 Ifwuandv are vectors in R" with the Euclidean inner product, then

u-v

A LA = o L= (25)
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Form Dot Product Example
- 5_
u=|-3 wv=[l -3 5] = -7
u a column 5 0
matrixandva | u-v=u'v=v'u =
column matrix 5 iy
v=14 vViu=[5 4 0]|-3|=-7
0 5

u=[l -3 5] |uw=[1 -3 5]
u a row matrix

5
4
0
andvacolumn | u-v=uv =v/u’ 5
matrix v=|4 1
[o] viuT =[5 4 0][ 3]
5

1
1 u=[5 4 0]|-3]|=~-
uac9lumn - |:_{| 5
5

matrixandva | u-v=vua=u’v’

row matrix 5
v=[5 4 0] |o"V=[1 -3 5|4|=-

0
w' =[1 -3 5]|4|=-7

u a row matrix u=[l -3 §] 0

and v a row u-v=uv =w’

sy v=[5 4 0) 1
w =[5 4 0]|-3|=-7

5

If Aisann x n matrix and u and v are n x 1 matrices, then it follows from the first
row in Table 1 and properties of the transpose that

Au-v=v(Au) = vAu= (A" u=u-. Ay
u- Av = (Av)7u = (vAT)u = vI(ATu) = AT

The resulting formulas

Au-v=u-ATv (26)

u-Av=ATu.v (27)
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3.3 Orthogonality

} DEFINITION 1 Two nonzero vectors u and v in R" are said to be orthogonal (or
perpendicular) if u - v= 0. We will also agree that the zero vector in R" is orthogonal
to every vector in R".

Thus, Equation (1) can be written as
a(x —xp) +b(y —yo) =0 [line]
a(x —x0) +b(y — yo) + ¢(z —20) =0 [plane]
These are called the point-normal equations of the line and plane.
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THEOREM 3.3.1
(a) If a and b are constants that are not both zero, then an equation of the form

ax+by+c=0 4)
represents a line in R? with normal n = (a, b).
(b) Ifa, b, and c are constants that are not all zero, then an equation of the form
ax+by+cz+d=0 (5)

represents a plane in R® with normaln = (a, b, ).

Recall that
ax+by=0 and ax+by+cz=0

are called homogeneous equations. Example 3 illustrates that homogeneous equations
in two or three unknowns can be written in the vector form

n.-x=20 (6)

where n is the vector of coefficients and x is the vector of unknowns. In R? this is called
the vector form of a line through the origin, and in R it is called the vector form of a
plane through the origin.
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THEOREM 3.3.2 Projection Theorem

If u and a are vectors in R", and if a # 0, then u can be expressed in exactly one way
in the form u = w, + w», where w, is a scalar multiple of a and w is orthogonal to a.

2 u-a
proj,u = Wa (vector component of u along a)
a
2 u-a
u— propu=u-— Wa (vector component of u orthogonal to a)
a

THEOREM 3.3.3 Theorem of Pythagoras in R"
If u and v are orthogonal vectors in R" with the Euclidean inner product, then

Ju+ v|% = [lul)® + ||v|? (14)

THEOREM 3.3.4

(@) In R? the distance D between the point Py(xo, yo) and the line ax + by +¢ =0
is

laxo + byo + c|
D= 15
va? +b? (13)
(b) In R? the distance D between the point Py(xy, Yo, Zo) and the plane
ax+by+cz+d=0is
b d
D= |axo + byo + czo + d| 16)

va?+ b +c?

34 The Geometry of Linear Systems

THEOREM 3.4.1 Let L be the line in R? or R® that contains the point Xo and is parallel
to the nonzero vector v. Then the equation of the line through X, that is parallel to v is

X = Xg + v (1)
If xo = 0, then the line passes through the origin and the equation has the form
Xi—1y (2)
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THEOREM 3.4.2 Let W be the plane in R® that contains the point Xy and is parallel
to the noncollinear vectors vy and v,. Then an equation of the plane through x, that is
parallel to vy and v, is given by

X = Xg + tiv; + vz 3)
If xo = 0, then the plane passes through the origin and the equation has the form
X = v + v, (4)

Remark Observe that the line through x, represented by Equation (1) is the translation by x, of
the line through the origin represented by Equation (2) and that the plane through x¢ represented
by Equation (3) is the translation by x; of the plane through the origin represented by Equation
(4) (Figure 3.4.4).

DEFINITION 1 If x¢ and v are vectors in R", and if v is nonzero, then the equation
X =Xg+1tv (5)

defines the line through X, that is parallel to v. In the special case where xy = 0, the
line is said to pass through the origin.

DEFINITION 2 If xg, v, and v, are vectors in R", and if v; and v, are not collinear,
then the equation

X = Xg + 1v; + V2 (6)
defines the plane through x, that is parallel to v, and v,. In the special case where
Xo = 0, the plane is said to pass through the origin.

If xy and x, are distinct points in R", then the line determined by these points is parallel to
the vector v = x; — X (Figure 3.4.5), so it follows from (5) that the line can be expressed
in vector form as

X = Xg + 1(X] — Xo) )]
or, equivalently, as
x=(1-1)xp+1xg (10)

These are called the two-point vector equations of a line in R".
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DEFINITION 3 If xg and x; are vectors in R", then the equation
X=Xo+1x;—%9) (0<t<1) (13)

defines the line segment from X, to x;. When convenient, Equation (13) can be written
as

x=(0—-0xo+1x; (0<t<1) (14)

THEOREM 3.4.3 If A is an m X n matrix, then the solution set of the homogeneous
linear system Ax = 0 consists of all vectors in R" that are orthogonal to every row
vector of A.

To motivate the result we are seeking, let us compare the solutions of the correspond-

ing linear systems
Py P
1 3 =2 0 2 O07(x 0 1 3 =2 0 2 07]x 0
2 6 -5 -2 4 -3||x; - 0 and 2 6 -5 -2 4 -3||=x; L -1
0 0 5 100 ©0 250 | x4 0 0 0 5 100 0 15| 5
2 6 0 8 4 18] |[=xs 0 2 6 0 8 4 181]=xs 6
| X6_| [ X6_|

We showed in Examples 5 and 6 of Section 1.2 that the general solutions of these linear
systems can be written in parametric form as

homogeneous —> X = —3r —4s —2t, xy=r, xX3=-25, xX3=35, x5=1, x6=0

nonhomogeneous —> Xy = —3r —4s —2t, xa=r, X3=-2§5, X4=85, Xs=1, X¢= 3

which we can then rewrite in vector form as
homogeneous —> (X1, X2, X3, X4, X5, X¢) = (—3r —4s — 2t,r, —2s,5,1,0)
nonhomogeneous —> (X1, X2, X3, X4, X5, Xg) = (— 3r — 4s — 2t,r, =25, 5,1, %)

By splitting the vectors on the right apart and collecting terms with like parameters, we
can rewrite these equations as

homogeneous —> (X1, X2, X3, X4, Xs) = r(=3, 1,0, 0, 0) + s(—4,0, =2, 1, 0, 0) + #(—2,0,0,0,1,0)  (20)
nonhomogeneous —> (xl, X2, X3, X4, x5) — r(—3, 1, 0, 0, 0) + S(—4, 0, —2, 1, 0, 0)
+1(=2,0,0,0,1,0) + (0,0,0,0,0, 1) (21

THEOREM 3.4.4 The general solution of a consistent linear system Ax = b can be
obtained by adding any specific solution of Ax = b to the general solution of Ax = 0.
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3.5 Cross Product of Vectors

DEFINITION 1 If u = (u;, u2, u3) and v = (vy, v2, v3) are vectors in 3-space, then
the cross product u x v is the vector defined by

u X V= (4203 — U3V, U3V — U1v3, U1V2 — UV))
or, in determinant notation,

uxv=( ) M

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product
Ifu, v, and w are vectors in 3-space, then

U U3 Uy u3 uy u2

’

V2 V3 VT W3 . vy W2

(@ u-(uxv)=0 [u x v is orthogonal to u)
b)) ve(uxv)=0 [u x v is orthogonal to v)
© lux vl = [ul?|v]* — (u-v)? [ Lagrange’s identity

(d) ux (vxw) = (u-w)v— (u+v)W [vector triple product)
() (uxv)xw=(u+w)v— (vew)u [vector triple product)

THEOREM 3.5.2 Properties of Cross Product

Ifu, v, and w are any vectors in 3-space and k is any scalar, then:
(@ uxv=—(vxu)

b)) ux(v+w)=@xv)+(uxw)

(¢) (u+v)xw=uxw)+(vxw)

(d) k(uxv)=(ku) x v=u x (kv)

() ux0=0xu=0

(f) uxu=0

WARNING As suggested by parts (d) and (e) of Theorem 3.5.1, it is not true in general
that u x (v x w) = (u x v) x w. For example,
IR =1Dd0=10
and
ix))xj=kxj=-i
SO
i (D) # G x ) x ]
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llu x vl| = [[ul[[lv]| sin &

THEOREM 3.5.3 Area of a Parallelogram

If u and v are vectors in 3-space, then ||u x v|| is equal to the area of the parallelogram
determined by u and v.

DEFINITION 2 Ifu, v, and w are vectors in 3-space, then
u-(vxw)

is called the scalar triple product of u, v, and w.

The scalar triple product of u = (u;, uz, u3), v= (vy, v3, v3), and w = (w;, wsy, w3)
can be calculated from the formula

uy uy u3
u-(vxw)=\|v; vy v (7
w wy wj

THEOREM 3.5.4
(a) The absolute value of the determinant

det [u' uz]
v v
is equal to the area of the parallelogram in 2-space determined by the vectors
u= (uy, u) andv = (vy, v2). (See Figure 3.5.7a.)
(b) The absolute value of the determinant
U Uz Uj
det|lvy, v v3
w w; wj

is equal to the volume of the parallelepiped in 3-space determined by the vectors
u= (u, uz, u3), v= (v, vz, v3), andw = (w;, wy, ws). (See Figure 3.5.7b.)

lu - (v x w)l =0 if and only if the vectors u, v, and w lie in the same plane.



