3.1 Vectors in 2-Space, 3-Space, and n-Space

DEFINITION 3 If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ are vectors in \mathbb{R}^n , and if k is any scalar, then we define

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n) \tag{10}$$

$$k\mathbf{v} = (kv_1, kv_2, \dots, kv_n) \tag{11}$$

$$-\mathbf{v} = (-v_1, -v_2, \dots, -v_n) \tag{12}$$

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 - v_1, w_2 - v_2, \dots, w_n - v_n)$$
(13)

THEOREM 3.1.1 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k and m are scalars, then:

- (a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (b) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- (c) u + 0 = 0 + u = u
- $(d) \quad \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- (e) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- $(f) \quad (k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- (g) $k(m\mathbf{u}) = (km)\mathbf{u}$
- $(h) \quad 1\mathbf{u} = \mathbf{u}$

THEOREM 3.1.2 If \mathbf{v} is a vector in \mathbb{R}^n and k is a scalar, then:

- (a) $0\mathbf{v} = \mathbf{0}$
- (b) k0 = 0
- $(c) \quad (-1)\mathbf{v} = -\mathbf{v}$

DEFINITION 4 If w is a vector in \mathbb{R}^n , then w is said to be a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ in \mathbb{R}^n if it can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r \tag{14}$$

where k_1, k_2, \ldots, k_r are scalars. These scalars are called the *coefficients* of the linear combination. In the case where r = 1, Formula (14) becomes $\mathbf{w} = k_1 \mathbf{v}_1$, so that a linear combination of a single vector is just a scalar multiple of that vector.

3.2 Norm of a Vector Norm, Dot Product, and Distance in Rn

DEFINITION 1 If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the **norm** of \mathbf{v} (also called the **length** of \mathbf{v} or the **magnitude** of \mathbf{v}) is denoted by $\|\mathbf{v}\|$, and is defined by the formula

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 (3)

THEOREM 3.2.1 If **v** is a vector in \mathbb{R}^n , and if k is any scalar, then:

- (a) $\|\mathbf{v}\| \geq 0$
- (b) $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- $(c) \quad ||k\mathbf{v}|| = |k| ||\mathbf{v}||$

DEFINITION 2 If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are points in \mathbb{R}^n , then we denote the *distance* between \mathbf{u} and \mathbf{v} by $d(\mathbf{u}, \mathbf{v})$ and define it to be

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$
(11)

DEFINITION 3 If \mathbf{u} and \mathbf{v} are nonzero vectors in R^2 or R^3 , and if θ is the angle between \mathbf{u} and \mathbf{v} , then the **dot product** (also called the **Euclidean inner product**) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{12}$$

If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

DEFINITION 4 If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then the **dot product** (also called the **Euclidean inner product**) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n \tag{17}$$

Ch 03 Linear Algebra, Anton Euclidean Vector Spaces

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

[Symmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

[Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$

[Homogeneity property]

(d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$

[Positivity property]

THEOREM 3.2.4 Cauchy-Schwarz Inequality

If
$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then
$$|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}|| \tag{22}$$

or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n| \le (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2}(v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$
(23)

THEOREM 3.2.6 Parallelogram Equation for Vectors

If **u** and **v** are vectors in \mathbb{R}^n , then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$
 (24)

THEOREM 3.2.7 If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4} \|\mathbf{u} - \mathbf{v}\|^2$$
 (25)

Form	Dot Product	Example	
u a column matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$	$\mathbf{u}^{T}\mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$ $\mathbf{v}^{T}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
u a row matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v} = \mathbf{v}^T \mathbf{u}^T$	5	$\mathbf{u}\mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$ $\mathbf{v}^T\mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
u a column matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \mathbf{u} = \mathbf{u}^T \mathbf{v}^T$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}$	$\mathbf{v}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$ $\mathbf{u}^{T}\mathbf{v}^{T} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
u a row matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}^T = \mathbf{v} \mathbf{u}^T$	$\mathbf{u} = [1 -3 5]$ $\mathbf{v} = [5 4 0]$	$\mathbf{u}\mathbf{v}^{T} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$ $\mathbf{v}\mathbf{u}^{T} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$

If A is an $n \times n$ matrix and **u** and **v** are $n \times 1$ matrices, then it follows from the first row in Table 1 and properties of the transpose that

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^{T}(A\mathbf{u}) = (\mathbf{v}^{T}A)\mathbf{u} = (A^{T}\mathbf{v})^{T}\mathbf{u} = \mathbf{u} \cdot A^{T}\mathbf{v}$$
$$\mathbf{u} \cdot A\mathbf{v} = (A\mathbf{v})^{T}\mathbf{u} = (\mathbf{v}^{T}A^{T})\mathbf{u} = \mathbf{v}^{T}(A^{T}\mathbf{u}) = A^{T}\mathbf{u} \cdot \mathbf{v}$$

The resulting formulas

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v} \tag{26}$$

$$\mathbf{u} \cdot A\mathbf{v} = A^T \mathbf{u} \cdot \mathbf{v} \tag{27}$$

3.3 Orthogonality

DEFINITION 1 Two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are said to be *orthogonal* (or *perpendicular*) if $\mathbf{u} \cdot \mathbf{v} = 0$. We will also agree that the zero vector in \mathbb{R}^n is orthogonal to *every* vector in \mathbb{R}^n .

Thus, Equation (1) can be written as

$$a(x - x_0) + b(y - y_0) = 0$$
 [line]

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 [plane]

These are called the *point-normal* equations of the line and plane.

THEOREM 3.3.1

(a) If a and b are constants that are not both zero, then an equation of the form

$$ax + by + c = 0 (4)$$

represents a line in R^2 with normal $\mathbf{n} = (a, b)$.

(b) If a, b, and c are constants that are not all zero, then an equation of the form

$$ax + by + cz + d = 0 ag{5}$$

represents a plane in \mathbb{R}^3 with normal $\mathbf{n} = (a, b, c)$.

Recall that

$$ax + by = 0$$
 and $ax + by + cz = 0$

are called *homogeneous equations*. Example 3 illustrates that homogeneous equations in two or three unknowns can be written in the vector form

$$\mathbf{n} \cdot \mathbf{x} = 0 \tag{6}$$

where **n** is the vector of coefficients and **x** is the vector of unknowns. In R^2 this is called the vector form of a line through the origin, and in R^3 it is called the vector form of a plane through the origin.

THEOREM 3.3.2 Projection Theorem

If **u** and **a** are vectors in \mathbb{R}^n , and if $\mathbf{a} \neq 0$, then **u** can be expressed in exactly one way in the form $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$, where \mathbf{w}_1 is a scalar multiple of **a** and \mathbf{w}_2 is orthogonal to **a**.

$$proj_a u = \frac{u \cdot a}{\|a\|^2} a \quad (\textit{vector component of } u \textit{ along } a)$$

$$\mathbf{u} - \text{proj}_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 (vector component of \mathbf{u} orthogonal to \mathbf{a})

THEOREM 3.3.3 Theorem of Pythagoras in Rⁿ

If **u** and **v** are orthogonal vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \tag{14}$$

THEOREM 3.3.4

(a) In R^2 the distance D between the point $P_0(x_0, y_0)$ and the line ax + by + c = 0 is

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \tag{15}$$

(b) In R^3 the distance D between the point $P_0(x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
 (16)

3.4 The Geometry of Linear Systems

THEOREM 3.4.1 Let L be the line in \mathbb{R}^2 or \mathbb{R}^3 that contains the point \mathbf{x}_0 and is parallel to the nonzero vector \mathbf{v} . Then the equation of the line through \mathbf{x}_0 that is parallel to \mathbf{v} is

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v} \tag{1}$$

If $\mathbf{x}_0 = \mathbf{0}$, then the line passes through the origin and the equation has the form

$$\mathbf{x} = t\mathbf{v} \tag{2}$$

THEOREM 3.4.2 Let W be the plane in \mathbb{R}^3 that contains the point \mathbf{x}_0 and is parallel to the noncollinear vectors \mathbf{v}_1 and \mathbf{v}_2 . Then an equation of the plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 is given by

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 \tag{3}$$

If $\mathbf{x}_0 = \mathbf{0}$, then the plane passes through the origin and the equation has the form

$$\mathbf{x} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 \tag{4}$$

Remark Observe that the line through \mathbf{x}_0 represented by Equation (1) is the translation by \mathbf{x}_0 of the line through the origin represented by Equation (2) and that the plane through \mathbf{x}_0 represented by Equation (3) is the translation by \mathbf{x}_0 of the plane through the origin represented by Equation (4) (Figure 3.4.4).

DEFINITION 1 If x_0 and v are vectors in \mathbb{R}^n , and if v is nonzero, then the equation

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v} \tag{5}$$

defines the *line through* \mathbf{x}_0 that is parallel to \mathbf{v} . In the special case where $\mathbf{x}_0 = \mathbf{0}$, the line is said to pass through the origin.

DEFINITION 2 If \mathbf{x}_0 , \mathbf{v}_1 , and \mathbf{v}_2 are vectors in \mathbb{R}^n , and if \mathbf{v}_1 and \mathbf{v}_2 are not collinear, then the equation

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 \tag{6}$$

defines the plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 . In the special case where $\mathbf{x}_0 = \mathbf{0}$, the plane is said to pass through the origin.

If \mathbf{x}_0 and \mathbf{x}_1 are distinct points in \mathbb{R}^n , then the line determined by these points is parallel to the vector $\mathbf{v} = \mathbf{x}_1 - \mathbf{x}_0$ (Figure 3.4.5), so it follows from (5) that the line can be expressed in vector form as

$$\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0) \tag{9}$$

or, equivalently, as

$$\mathbf{x} = (1 - t)\mathbf{x}_0 + t\mathbf{x}_1 \tag{10}$$

These are called the *two-point vector equations* of a line in \mathbb{R}^n .

DEFINITION 3 If x_0 and x_1 are vectors in \mathbb{R}^n , then the equation

$$\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0) \quad (0 \le t \le 1) \tag{13}$$

defines the *line segment from* x_0 to x_1 . When convenient, Equation (13) can be written as

$$\mathbf{x} = (1 - t)\mathbf{x}_0 + t\mathbf{x}_1 \quad (0 \le t \le 1) \tag{14}$$

THEOREM 3.4.3 If A is an $m \times n$ matrix, then the solution set of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ consists of all vectors in R^n that are orthogonal to every row vector of A.

To motivate the result we are seeking, let us compare the solutions of the corresponding linear systems

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 5 \\ 6 \end{bmatrix}$$

We showed in Examples 5 and 6 of Section 1.2 that the general solutions of these linear systems can be written in parametric form as

homogeneous
$$\longrightarrow x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$
nonhomogeneous $\longrightarrow x_1 = -3r - 4s - 2t$, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = \frac{1}{3}$

which we can then rewrite in vector form as

homogeneous
$$\longrightarrow (x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, 0)$$

nonhomogeneous $\longrightarrow (x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, \frac{1}{3})$

By splitting the vectors on the right apart and collecting terms with like parameters, we can rewrite these equations as

THEOREM 3.4.4 The general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding any specific solution of $A\mathbf{x} = \mathbf{b}$ to the general solution of $A\mathbf{x} = \mathbf{0}$.

3.5 Cross Product of Vectors

DEFINITION 1 If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the *cross product* $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

or, in determinant notation,

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix} \tag{1}$$

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

If u, v, and w are vectors in 3-space, then

(a) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ [$\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u}]

(b) $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ [$\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{v}]

(c) $\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$ [Lagrange's identity]

(d) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ [vector triple product]

(e) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$ [vector triple product]

THEOREM 3.5.2 Properties of Cross Product

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are any vectors in 3-space and k is any scalar, then:

(a) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$

(b) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$

(c) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$

 $(d) \quad k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$

(e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$

 $(f) \quad \mathbf{u} \times \mathbf{u} = \mathbf{0}$

WARNING As suggested by parts (d) and (e) of Theorem 3.5.1, it is not true in general that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$. For example,

$$\mathbf{i} \times (\mathbf{j} \times \mathbf{j}) = \mathbf{i} \times \mathbf{0} = \mathbf{0}$$

and

$$(\mathbf{i}\times\mathbf{j})\times\mathbf{j}=\mathbf{k}\times\mathbf{j}=-\mathbf{i}$$

so

$$\mathbf{i} \times (\mathbf{j} \times \mathbf{j}) \neq (\mathbf{i} \times \mathbf{j}) \times \mathbf{j}$$

Ch 03 Linear Algebra. Anton Euclidean Vector Spaces

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

THEOREM 3.5.3 Area of a Parallelogram

If **u** and **v** are vectors in 3-space, then $\|\mathbf{u} \times \mathbf{v}\|$ is equal to the area of the parallelogram determined by **u** and **v**.

DEFINITION 2 If u, v, and w are vectors in 3-space, then

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$

is called the scalar triple product of u, v, and w.

The scalar triple product of $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ can be calculated from the formula

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
 (7)

THEOREM 3.5.4

(a) The absolute value of the determinant

$$\det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$$

is equal to the area of the parallelogram in 2-space determined by the vectors $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. (See Figure 3.5.7a.)

(b) The absolute value of the determinant

$$\det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$$

is equal to the volume of the parallelepiped in 3-space determined by the vectors $\mathbf{u} = (u_1, u_2, u_3), \mathbf{v} = (v_1, v_2, v_3),$ and $\mathbf{w} = (w_1, w_2, w_3).$ (See Figure 3.5.7b.)

 $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = 0$ if and only if the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} lie in the same plane.