
DEFINITION 1 If A is a square matrix, then the *minor of entry* a_{ij} is denoted by M_{ij} and is defined to be the determinant of the submatrix that remains after the *i*th row and *j*th column are deleted from A. The number $(-1)^{i+j}M_{ij}$ is denoted by C_{ij} and is called the *cofactor of entry* a_{ij} .

THEOREM 2.1.1 If A is an $n \times n$ matrix, then regardless of which row or column of A is chosen, the number obtained by multiplying the entries in that row or column by the corresponding cofactors and adding the resulting products is always the same.

DEFINITION 2 If A is an $n \times n$ matrix, then the number obtained by multiplying the entries in any row or column of A by the corresponding cofactors and adding the resulting products is called the *determinant of A*, and the sums themselves are called *cofactor expansions of A*. That is,

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$
(7)

[cofactor expansion along the jth column]

and

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$
(8)

[cofactor expansion along the ith row]

THEOREM 2.1.2 If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product of the entries on the main diagonal of the matrix; that is, $det(A) = a_{11}a_{22} \cdots a_{nn}$.

THEOREM 2.2.1 Let A be a square matrix. If A has a row of zeros or a column of zeros, then det(A) = 0.

THEOREM 2.2.2 Let A be a square matrix. Then $det(A) = det(A^T)$.

Relationship	Operation
$\begin{vmatrix} ka_{11} & ka_{12} & ka_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\det(B) = k \det(A)$	In the matrix B the first row of A was multiplied by k .
$\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\det(B) = -\det(A)$	In the matrix B the first and second rows of A were interchanged.
$\begin{vmatrix} a_{11} + ka_{21} & a_{12} + ka_{22} & a_{13} + ka_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\det(B) = \det(A)$	In the matrix B a multiple of the second row of A was added to the first row.

THEOREM 2.2.3 Let A be an $n \times n$ matrix.

- (a) If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, then det(B) = k det(A).
- (b) If B is the matrix that results when two rows or two columns of A are interchanged, then det(B) = - det(A).
- (c) If B is the matrix that results when a multiple of one row of A is added to another or when a multiple of one column is added to another, then det(B) = det(A).

THEOREM 2.2.4 Let E be an $n \times n$ elementary matrix.

- (a) If E results from multiplying a row of I_n by a nonzero number k, then det(E) = k.
- (b) If E results from interchanging two rows of I_n , then det(E) = -1.
- (c) If E results from adding a multiple of one row of I_n to another, then det(E) = 1.

THEOREM 2.2.5 If A is a square matrix with two proportional rows or two proportional columns, then det(A) = 0.

THEOREM 2.3.1 Let A, B, and C be $n \times n$ matrices that differ only in a single row, say the rth, and assume that the rth row of C can be obtained by adding corresponding entries in the rth rows of A and B. Then

$$det(C) = det(A) + det(B)$$

The same result holds for columns.

$$\det\begin{bmatrix} 1 & 7 & 5 \\ 2 & 0 & 3 \\ 1+0 & 4+1 & 7+(-1) \end{bmatrix} = \det\begin{bmatrix} 1 & 7 & 5 \\ 2 & 0 & 3 \\ 1 & 4 & 7 \end{bmatrix} + \det\begin{bmatrix} 1 & 7 & 5 \\ 2 & 0 & 3 \\ 0 & 1 & -1 \end{bmatrix}$$

LEMMA 2.3.2 If B is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then $\det(EB) = \det(E)\det(B)$

THEOREM 2.3.3 A square matrix A is invertible if and only if $det(A) \neq 0$.

THEOREM 2.3.4 If A and B are square matrices of the same size, then det(AB) = det(A) det(B)

THEOREM 2.3.5 If A is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

DEFINITION 1 If A is any $n \times n$ matrix and C_{ij} is the cofactor of a_{ij} , then the matrix

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

is called the *matrix of cofactors from A*. The transpose of this matrix is called the *adjoint of A* and is denoted by adj(A).

THEOREM 2.3.6 Inverse of a Matrix Using Its Adjoint

If A is an invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) \tag{6}$$

It follows from Theorems 2.3.5 and 2.1.2 that if A is an invertible triangular matrix, then

$$\det(A^{-1}) = \frac{1}{a_{11}} \frac{1}{a_{22}} \cdots \frac{1}{a_{nn}}$$

Moreover, by using the adjoint formula it is possible to show that

$$\frac{1}{a_{11}}$$
, $\frac{1}{a_{22}}$,..., $\frac{1}{a_{nn}}$

are actually the successive diagonal entries of A^{-1} (compare A and A^{-1} in Example 3 of Section 1.7).

THEOREM 2.3.7 Cramer's Rule

If $A\mathbf{x} = \mathbf{b}$ is a system of n linear equations in n unknowns such that $det(A) \neq 0$, then the system has a unique solution. This solution is

$$x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, \dots, \quad x_n = \frac{\det(A_n)}{\det(A)}$$

where A_j is the matrix obtained by replacing the entries in the jth column of A by the entries in the matrix

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Multiplying the matrices out gives

$$\mathbf{x} = \frac{1}{\det(A)} \begin{bmatrix} b_1 C_{11} + b_2 C_{21} + \dots + b_n C_{n1} \\ b_1 C_{12} + b_2 C_{22} + \dots + b_n C_{n2} \\ \vdots & \vdots & \vdots \\ b_1 C_{1n} + b_2 C_{2n} + \dots + b_n C_{nn} \end{bmatrix}$$

The entry in the jth row of x is therefore

$$x_{j} = \frac{b_{1}C_{1j} + b_{2}C_{2j} + \dots + b_{n}C_{nj}}{\det(A)}$$

THEOREM 2.3.8 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row echelon form of A is In.
- (d) A can be expressed as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $\det(A) \neq 0$.

Proof of Theorem 1.7.1(c) Let $A = [a_{ij}]$ be a triangular matrix, so that its diagonal entries are

$$a_{11}, a_{22}, \ldots, a_{nn}$$

From Theorem 2.1.2, the matrix A is invertible if and only if

$$\det(A) = a_{11}a_{22}\cdots a_{nn}$$

is nonzero, which is true if and only if the diagonal entries are all nonzero.