

Show enough work for FULL credit. Attach extra white paper as needed. For the multiple choice state a brief reason why you choose the answer you did to get full credit.

Chpt 7 Momentum

(5pts) The momentum of an isolated system is conserved

a) in both elastic and inelastic collisions.

- (b) only in inelastic collisions.
- (c) only in elastic collisions.

Explain:

5

5

5

 20

Cons. of momentum is universal

2. (5 pts) In the figure, determine the character of the collision. The masses of the blocks, and the velocities before and after, are shown. The collision is 3.0 m/s 1.5 m/s 1.8 m/s 1.8 m/s 2 kg | 8 kg | 2 kg | 8 kg (a) perfectly elastic. $\qquad \qquad$ Before \mathcal{N} (b) partially inelastic. C completely inelastic. \overline{d}) not possible because momentum is not conserved.
Explain: \sim Momentum Before: $(3)(2)+(1.5)(8) = 6+12 = 18$? Momentum After: $(1,8)(2) + (1.8)(8) = 3.6 + 14.4 = 18$ · Sticks Logg complately checks to be ok data

 $\overline{3.}$ (10 pts) A 60-kg swimmer suddenly dives horizontally from a 150-kg raft with a speed of 1.5 m/s. The raft is initially at rest. What is the speed of the raft immediately after the diver jumps if the water has negligible effect on the raft?

Diagram: BEFORE AFTER \rightarrow (+) \rightarrow (+) M M momentum before $V.M + V.m$ $+$ Momentum after $=$ $V/M + v'm$ $=$ $V'(150 \text{ kg}) + (1.5 \text{ m/s})(60 \text{ kg})$ $(1.5)(60)$ 150 $V' =$ 750 $= 2$ = $= 5$ = 10.6 m/s Page 1 of 5

 (4) 10 pts) In a police ballistics test, a 10.0-g bullet moving at 300 m/s is fired into a 1.00-kg block at rest. The bullet goes through the block almost instantaneously and emerges with 50.0% of its original speed. What is the speed of the block just after the bullet emerges?

= $\frac{1}{2}$ m v $\left[\begin{array}{c} k+1 \end{array}\right]$ = $\frac{mgh}{\sqrt{16H}}$ = $V = \sqrt{12h + 1}$ = $\frac{2h}{2}$

Smalles 7

 $divisor \rightarrow [mgas1]$

\๖

 \mathcal{I}

6. (10 pts) A hoop with a mass of 2.75 kg is rolling without slipping along a horizontal surface with a speed of 4.5 m/s when it starts down a ramp that makes an angle of 25° below the horizontal. What is the forward speed of the hoop after it has rolled 3.0 m down as measured along the surface of the ramp? Before

$$
m = 2.75\frac{B-5m}{1.3m} = 5\frac{4.5m}{1.3m} = 5\frac{1.5m}{1.3m} = 5
$$

$$
\frac{\sqrt{\frac{3m}{250}}}{3 \cdot \sin 25 = 1.268m}
$$

 \rightarrow

7. (10 pts) A 40.0-kg child running at 3.00 m/s suddenly jumps onto a stationary playground merry-go-round at a distance 1.50 m from the axis of rotation of the merry-go-round. The child is traveling tangential to the edge of the merry-go-round just before jumping on. The moment of inertia about its axis of rotation is 600 kg \cdot m² and very little friction at its rotation axis. What is the angular speed of the merry-go-round just after the child has jumped onto it?

aaluminum

(b) brass

(c) copper

(d) They will all stretch the same distance.

Explain:

 $5\,$

 $Y =$ sters strain 15) $Y = F/A$ Δl F.l $A. Y$ the smaller Y the Larger Al So Aluminum, b/c has the smallest y Page 4 of 5

10J (10 pts) A 1200-kg car is being raised with a constant acceleration of 2.53 m/s² by a crane, using a 20-m long steel cable that is 1.5 cm in diameter. Young's modulus for steel is 2.0 x 10¹¹ N/m². What is the change in length of the cable caused by lifting the car?

 $5\,$ $5\,$ 20 Part I: $F_T = Ma + Mg$ 20m $F_{Tensim} = (1200kg)(2.53m/s^{2})$ $+(1200kg)(9845)$ Part II: Stress / Strain = Y { Solve for AL } $\left(200(12.33 m/s^2)\right)$ $Y = \frac{F_r/A}{\Lambda R / \rho}$ $\frac{1}{\Lambda R}$ $\frac{1}{\Lambda R}$ $\frac{1}{\Lambda R}$ $\frac{1}{\Lambda R}$ $\frac{1}{\Lambda R}$ $\frac{1}{\Lambda R}$ $\Delta \varrho = F_f \varrho \varrho$ $Y \cdot A$ $A = |14,796 \text{ N}(20m)|$ $(2x10)^{10}$ $(10)^{5}$ $(9.015)^{2}$ $\Delta l = 0.0084m$ or $8.4mm$

ave vel: $\overline{v} = \frac{\Delta \xi}{\Delta t} \frac{CUTFONS}{T}$ $Chpt2-3$ ave acient : $\overline{a} = \frac{\Delta v}{\Delta t}$ $(- \rho_{lm})$ $v = v_0 + a t$ $x = x_0 + V_0 t + \frac{1}{2} a t^2$ $V_f^2 = V_0^2 + 2a\Delta x$ $\overline{v} = \frac{v + v_{o}}{2}$ y-comp't. $2-Dim$ $X-C\alpha n p$ $V_y = V_{oy} + Q_y +$ $V_x = V_{0x} + A_x +$ $y = y_0 + v_{0y}t + \frac{1}{2}at^2$ $X = X_0 + V_{o_x}t + \frac{1}{2}at^2$ $V_{xy} = V_{oy} + 2a\Delta y$ $V_{f_{x}}^2 = V_{o_{x}}^2 + 2a\Delta x$ $\overline{v}_y = \frac{v_y + v_{oy}}{2}$ $\overline{V}_x = \frac{V_x + V_{0x}}{T}$ · Range Egn: R = Vo²sin 20 Time of Flight from ground to ground: $t = \frac{2v_{0y}}{q}$ · Hight Egn: H= Voy · Relative Volocity: $S\hat{h}\hat{\theta} = \frac{V_{Water}}{V_{Baf}wt \cdot wt.}$ where

$$
\frac{(\frac{EQUATIOIS}{EQUA+IOUS})}{\frac{EPUATIOIS}{EF_Y:MA_Y}}, F_{Spring} =+AX
$$
\n
$$
\frac{Friction: f=MN}{\frac{EvlNPLALACLIn: d=\frac{V_{ran}}{R}}, V_{Tan}=\frac{2\pi R}{T}, f=\frac{4\pi}{T}
$$
\n
$$
\frac{Gravi[1 + im: F = G\frac{Nm}{R}, J = \frac{4\pi}{GM}^2, 3}{GM}
$$
\n
$$
\frac{WaK: W = Fd cos\theta}{KE = \frac{1}{2}mv^2}, P\epsilon_{grav} = mc^2
$$
\n
$$
PE_1 + KE_1 + W_{applied} = PE_2 + KE_2
$$
\n
$$
\frac{Pouer: P = Emergu}{Eime}, \epsilon + Fice
$$
\n
$$
P = \frac{W}{1 + \epsilon} = \frac{Fd}{1 + \epsilon} = FV
$$
\n
$$
P = \frac{W}{1 + \epsilon} = \frac{Fd}{1 + \epsilon} = FV
$$
\n
$$
P = \frac{W}{1 + \epsilon} = \frac{Fd}{1 + \epsilon} = FV
$$
\n(2)

6. 66 Rotation
\n
$$
\vec{p} = m\vec{v}, \quad \vec{p} = \frac{\Delta \vec{p}}{\Delta t}, \quad m_A \vec{v}_A + m_B \vec{v}_B = m_A \vec{v}_A + m_B \vec{v}_B
$$
\n
$$
i\omega = \vec{r} \Delta t = \Delta \vec{p}
$$
\n
$$
V_A - V_B = -(V_A - V_B) \Leftrightarrow (-b)m \text{ clearth } \vec{r} \times \vec{p} \times \vec{p
$$

 $\,$ $\,$

.Ch 9 Statics and Elasticity $\Sigma F_{x}=0$, $\Sigma F_{y}=0$, $\Sigma \tau=0$ Modulus of E lasticity = $\frac{Stress}{strain}$ $I-D:$ stess = F/A , stain= ALQ $2-D:$ stress (stream) = F/A, strain (deflection) = $\Delta l/l$ $3-D$: stress = P ; strain = $\Delta V/V_o$