weskip 8.2 For now () 8.3 Confidence Intervals for Proportions Recall: How many cigarettes do you smoke? (a means problem) M, O or X, S census sample · Do you smoke ? (a proportions problem) $\hat{p} = N$ In 801 we were building a confidence Intrl for means Here we build cont. Intel for proportions (For meansure used grouped data. SD = Opop/In we replaced Z = X-M with Z = X-M • Here we use $SE = \sqrt{\frac{2}{p}} \int_{N} P = \frac{pop}{proportion}$ $\int SE = \sqrt{\frac{2}{p}} \int_{N} P = \frac{pop}{proportion}$ $\hat{p} = sample = \frac{pop}{pop}$ 2=1-p $(\hat{q} = (-\hat{p}))$

All the steps for forming 2 cont. Intro 3 are the same. -> The Assumptions (aka Conditions) change. -> The SE changes but the proceedure is the same. Same formula ME=ZcoSE) + use In now $SE = \sqrt{\hat{p}(1-\hat{p})}$ is the Z-score that separates the middle 90%, or 95%, etc Recall Z c sample data trom the extreme data found in the wings +7. Finally we use -t. CI: p+ME

The Conditions are 1. Independent individuals (same) -> SRS. and n<10% of population 2. Need sufficiently large data in the sample -> Success & failures need to be Esual toorlarger Han 10. En.p \$10 \$ n.(-p) \$105 Successer failures.

a second a s

. .

ASSUM Proportions (z)

- One sample
 - Individuals are independent.
 - 2. Sample is sufficiently large.
- Two Groups
 - Groups are independent.
 - 2. Data in each group are independent.
 - 3. Both samples are sufficiently large.

Means (t)

- One Sample (df = n 1)
 - 1. Individuals are independent.
 - 2. Population has a Normal model.
- Matched pairs (df = n 1)
 - 1. Data are matched.
 - Individuals are independent.
 - **3. Population of differences is Normal.**
- Two independent samples (df from technology)
 - Groups are independent.
 - 2. Data in each group are independent.
 - 3. Both populations are Normal.

Distributions/Association (χ^2)

Goodness of fit (df = # of cells - 1; one variable, one sample compared with population model)

- Data are counts.
- 2. Data in sample are independent.
- **3.** Sample is sufficiently large.
- **Homogeneity** [df = (r 1)(c 1); many groups compared on one variable]
 - 1. Data are counts.
 - 2. Data in groups are independent.
 - 3. Groups are sufficiently large.
- Independence [df = (r 1)(c 1); sample from one population classified on two variables]
 - Data are counts.
 - Data are independent.
 - 3. Sample is sufficiently large.

Regression (t, df = n - 2)

- Association of each quantitative variable ($\beta = 0$?)
 - 1. Form of relationship is linear.
 - 2. Errors are independent.
 - **3. Variability of errors is constant.**
 - 4. Errors have a Normal model.

1. SRS and n < 10% of the population. 2. Successes and failures each \geq 10.

Justificat

- 1. (Think about how the data were collected.)
- 2. Both are SRSs and n < 10% of populations OR random allocation.
- 3. Successes and failures each \geq 10 for both groups.
- 1. SRS and n < 10% of the population.
- Histogram is unimodal and symmetric.*
- 1. (Think about the design.)
- 2. SRS and n < 10% OR random allocation.
- 3. Histogram of differences is unimodal and symmetric.*
 - or n>30

- 1. (Think about the design.)
- 2. SRSs and n < 10% OR random allocation.
- 3. Both histograms are unimodal and symmetric.*
 - or both n>30
- 1. (Are they?) 2. SRS and n < 10% of the population.
- 3. All expected counts \geq 5.
- 1. (Are they?)
- 2. SRSs and *n* < 10% OR random allocation.
- 3. All expected counts ≥ 5 .

- 1. (Are they?)
 - 2. SRSs and n < 10% of the population.
 - 3. All expected counts \geq 5.
 - 1. Scatterplot looks approximately linear.
 - 2. No apparent pattern in residuals plot.
 - 3. Residuals plot has consistent spread.
 - 4. Histogram of residuals is approximately unimodal and symmetric, or Normal probability plot reasonably straight.*

Using the Chart:

We will introduce (d) this table in 8.2 (means w/no o)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TABLE A-3	t Distribution: Cr	itical t Value	S			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Area in One Tail			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.005	0.01	0.025	0.05	0.10	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-		0.000			Confi	dance Tinto	vals
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Degrees of	2.21	0.02	Area in Two Tails	0.10	0.20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Freedom	0.01	0.02	0.0,5	0.10	0.20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	1	63 657	31.821	12.706	6.314	3.078	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	9.925	6.965	4.303	2.920	1.886	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	5.841	4.541	3.182	2.353	1.6.38	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	4.604	3.747	2.776	2.132	1.555	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5	4.032	3.365	2.5/1	1 943	1.440	L. T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6	3.707	3.143	2.447	1.895	1.415	XTAV
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Λ	7	3.499	2.998	2 306	1.860	1.397	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(8	3.355	2.890	2.262	1.833	1.383	a san tind
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10	3 169	2.764	2.228	1.812	1.372	proportion
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10	3.106	2.718	2.201	1.796	1.303	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12	3.055	2.681	2.179	1.782	1.350	1.0 00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	3.012	2.650	2.160	1.771	1.345	wear
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14	2.977	2.624	2.145	1.753	1.341	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\backslash /	15	2.947	2.602	2.1.51	1.746	1.337	not use
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	16	2.921	2.585	2.120	1.740	1.333	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1/	2.898	2.552	2.101	1.734	1.330	NAC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	10	2.878	2.539	2.093	1.729	1.328	1)·U-P
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ZC	20	2.845	2.528	2.086	1.725	1.323	(li)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		21	2.831	2.518	2.080	1.721	1.321	or this
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		22	2.819	2.508	2.074	1.714	1.319	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ralles	23	2.807	2.500	2.009	1.711	1.318	I-take
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		24	2.797	2.492	2.060	1.708	1.316	Cour
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 -0	25	2.787	2.479	2.056	1.706	1.315	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	and	20	2.771	2.473	2.052	1.703	1.314	* It is
	0 1	28	2.763	2.467	2.048	1.701	1.311	A SO IJ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pund	29	2.756	2.462	2.045	1.697	1.310	int a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Junic	A 30	2.750	2.457	2.040	1.696	1.309	Justa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a init		2.744	2.435	2.037	1.694	1.309	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Onvienieni	32	2.728	2.441	2.032	1.691	1.307	(myenient
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	()	36	2.719	2.434	2.028	1.688	1.300	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	on the	38	2.712	2.429	2.024	1.684	1.303	one
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	40	2.704	2.423	2.021	1.679	1.301	C 10.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	() ()	45	2.690	2.412	2.009	1.676	1.299	table
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fefelal	50	2.668	2.396	2.004	1.673	1.297	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J. Think	60	2.660	2.390	2.000	1.671	1.296	cto
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		65	2.654	2.385	1.997	1.669	1.295	0.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	K .	70	2.648	2.381	1.994	1.665	1.294	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		75	2.643	2.377	1.992	1.664	1.292	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		80	2.639	2.374	1.987	1.662	1.291	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		90	2.032	2.364	1.984	1.660	1.290	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		200	2.601	2.345	1.972	1.653	1.286	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NV	300	2.592	2.339	1.968	1.650	1.284	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.1	400	2.588	2.336	1.966	1.649	1.204	
750 2.582 2.331 1.905 1.047 1.282 1000 2.581 2.330 1.962 1.646 1.282 2000 2.578 2.328 1.961 1.646 1.282 2000 2.576 2.326 1.960 1.646 1.282 2.576 2.326 1.960 1.645 1.282 2.576 2.326 1.960 1.645 1.282 2.576 2.326 1.960 1.645 1.282 2.576 2.326 1.960 1.645 1.282 2.576 2.326 1.960 1.645 1.282 2.576 2.576 2.326 1.960 1.645 1.282 2.576 2.576 2.326 1.960 1.645 1.282 2.576 2.576 2.326 9.57 $90%$ $80%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$ $50%$	\times	500	2.586	2.334	1.905	1.040	1.283	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	V	750	2.582	2.331	1.962	1.646	1.282	
Nom Large 2.576 2.326 1.960 1.645 1.282 E C Dist CL 99% 98% 95% 90% 80%		1000	2.301	2.328	1.961	1.646	1.282	
Dist CL 99% 98% 95% 90% 80%	Nom	Large	2.576	2.326	1.960	1.645	1.282	Etc
JUST CL 116 10 6 13 13 10 16 00 10	Nier	2 Large	900	960	1 900/	90	0/ 80%	
	Dist	CL	1166	Education	6 () ()	son Addison	-Westey.	

Ex A sample of 800 parents in the MART School district found that 632 parents Favor music education, Construct a 90% Confidence int'ultor the proportion of parents favoring music education (step 0): Type of problem: 1 pop proportion => 2-table => Z-table ((too large of Independence? is 800 parents ((too large of Independence? is soo parents in the Sample?)) Hart Sch-1 Dirt? To Hart School Dist? I.E. are there 8000 families in the Hart School dist. Ans: most probably (Assume So). ((large enough Street)) Large enough sample? Sample Sizer)) • Successes : 632 710, Yes ? • Failures : 800-632 = 168 > 10, yes

-

 $\begin{array}{l} \hline \hline step 1 \end{array} : Point estimate successer \\ \hline \hline P = \frac{x}{n} = \frac{632}{800} = \frac{0.79}{0.79\%} \end{array}$ (x=1-0.9=0.10) Step 2): (a) Conf. Level: 90% (b) critical value : Zc=1.645 Step 3:) Standard Error $SE = \int \hat{P}\hat{g} = \int \hat{P}(1-\hat{p})$ $= \sqrt{\frac{0.79(1-0.79)}{800}} = 0.0144$ Stp4 Margin of Error: Zc. SE ME = (1.645)(0.0144) = 0.0237Stop 5): C. I_{n+vl} : $\hat{p} \pm ME$ 0.79 - 0.02370.766Step 6: The are 90% confident that the property of MSD parate who favor music education is between MSD parate who favor music education is between M6.6% and 81.4%

Name Santa Claus MATH 140 Statistics Confidence Interval Worksheet (a) Type of problem (circle the line or part therein) STEP 0: (1- pop | 2 pop for proportion (z-table) 1- pop | 2 pop for means (t-table) (b) Assumptions (state the general and justify your application's) There are more than 10*800 \$8000 families in the Hart School District. Independence ? Large enorgh Sample? 632 >10 \$(800-632) =10 Compute the point estimate STEP 1: $\hat{p} = 632/800 = 0.79$ (b) Find the corresponding critical value from the tables (reverse Z-look up) row 1.60 column 0.4 and 0.5 (a) State the Confidence Level: 90 % STEP 2: t =_((1.645 critical value (circle one): Compute the standard error. STEP 3: $\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}} \qquad \frac{s}{\sqrt{n}} \qquad \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \qquad \frac{s_d}{\sqrt{n}}$ (a) Formula SE: (1-0.79=0.21) SE = $\sqrt{(0.79)(0.21)} = 0.0144$ SE Value = 0.0144 Compute the Margin of Error = critical value * SE STEP 4: * 0.0144 = 0.0237 ME = Construct the Confidence Interval: point estimate \pm ME STEP 5: < 0.79 ± 0.0237 0.79 - 0.0232 2 p < 0.8140.766 Interpret the results STEP 6: We are 90% confident that the proportion of Hart District parents who believe music education is benticial is between 76.6% and 81.4%

Neci'y Sample Size In order to con Fidence Level we can compute "n" needed · proportions - Recall $ME = \pm Z_c \int \frac{\hat{p}(1-\hat{p})}{n}$ · Solvethis for "n" $n = \hat{p}(1-\hat{p})\left(\frac{Z_c}{m\epsilon}\right)$ Q: Do you smoke? y/n a preliminary sample cl. Take initial sample 2. calculate $\hat{p} = # yes/ToT #$ 3. get 2. from the tables & Decide on how close of J4. Calculate "n" from the formula above. Interval you want \$±0.5]5: Do you need more samples ?2. IF you can't obtain an initial sample use p= 0.50, then q= 0.50 also But a good star An example on next page

(EX A sayple of 800 parents found that 632 believe music education to be important. Q: What is the necity sayple size to a cheive a 95% confidence level with a margin of enor ± 0.025 i.e. 0.25% 1) 635 of 8002) $\hat{p} = \frac{635}{800} = 0.79$ 3) $95\% \rightarrow \frac{7}{1.96}$ 4) $N = (0.79)(0.21) \left(\frac{1.16}{\pm 0.025}\right)$ from the formula n = 1019.71 vound up always [1020] 5) SO, to be able to a cheine 95% with a ME of + 0.025 on the proportion, we need an additional 1020-800 = 220 samples p=0.025 pretty accurate, no? The more doing we desire the more samples are needed. WARNING: we may run up against the independent Sample criteria of more than 10% being polled