The Normal Distribution (Bell curre) 0 Chapter 7 7.1. The "standard" Normal distribution · Recall Data -> Buckets -> Histogram -> Shape. Here we to cur on symmetric unimodal shapes " Sym. and Unimedal not symmetric not unimodal Review Distribution Shapes ... Shape my histogram & shape · Recall à probability "histogram" has a net area · This allows us to relate the probability of an outcome to the dred of the region that the outcome definer event outcome region probability P(as I <b)= area density Carea under the curve cure between "a" and "b" ->X v iable 2

at random, what is the prob. that the value of the parameter being studied is between 4 \$ 6

ans: 0.16

c) what proportion of the population is not between 4\$6

He can

P (not between 456) $= 1 - P(4 \le x \le 6)$ = 1 - 0.16= [0.84]

Rule-of-thumb applier (chebychers) (3) $\mathbf{\Theta}$ 68 % of data falls between (X-s, X+s) -35 -25 -15 25 15 35 95% of the data falls between (X-2s, X+2s) (usuall data) +25 25 basically all data fals between $(\overline{\mathbf{x}}-\mathbf{3}\mathbf{s},\overline{\mathbf{x}}+\mathbf{3}\mathbf{s})$ 25 7 3'5 unusual to find

data past 125

Ý a sample data census result Z-score $X \rightarrow X$ Each Data point in a set has a z-score the z-score tells us how many std. ders we are from the mean value. @ Standard Normal Distribution Here X=0 (u=0) and the std. dev s=1 (0=1). x=0 1 [ex] X= 0.5 in a std. norm dist. $Z = \frac{0.5 - 0}{1 - c} = 0.5$ X in a std. normal dist is the z-scire. So

What is the probability that the selected ? thermometer has a temp between 2°\$3°C ? (1) 25 > 0.0250 (iil) ~ 0.0015 0° Gid 3 s 99.7% (1,0000-0.9970)/2 (1.0000 - 0.9970)/z = 0.0015 0.9970 = 0.0030/2 = 0.0015 right wing >3°C So to answe the question $P(2^{\circ}C < X < 3^{\circ}C)$ $= P(X > 2^{\circ}) - P(X > 3^{\circ})$ - 0.0015 0.0250 2.35% Chance the therm. is 0.0235 between 2° 3' 3. Alternatively € O2 E 2 -2 0.9500 0.0235 0.9970 12 0.047

We now focus on more detailed questions (8) Assume you are a researcher in ice studies (pollutants effect on ice freezing). You need a much more accurate themometer, and much more flexability in your probability calculations - more aring than Rule-Of Ex what is the probability that à polluted ice sample will freeze not at 0°C but rather at = 2.07°C or less (Assume the ice follows N(0,1)) (i) \$ (ii) Area=" The rule of thymb will Not be accurate enough. - a conta -2.07 here need the Z-tables. Pause the example and introducthe z-tables These tables describe in detail the area to the left of a given Z-score. Z-score { For our N(0,1) Zisthe direct temporture Resume values of negative 2-score number -2.2

NEGATIVE *z* Scores

15

Ζ	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.50										
and	1									
lower	.0001									
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.000
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.000
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.000
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.000
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.001
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.001
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.001
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.002
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.003
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	* .0049	.004
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.006
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.008
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.011
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.014
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.018
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.023
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.029
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.036
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.045
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.055
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.068
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.082
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.098
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.117
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.137
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.161
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.186
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.214
-0.6	,2/43	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.245
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.277
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.312
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.348
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.385
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.424
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.464

z score	Area	
-1.645	0.0500	◄

-2.575 0.0050

Copyright 2007 Pearson Education, publishing as Pearson Addison-Wesley.

POSITIVE z Scores

.

TABLE A-	2 (con	tinued) Ci	umulative	Area from	the LEFT					
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	8944	8962	8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	* .9505	9515	9525	9535	9545
1.7	.9554	.9564	.9573	.9582	9591	9599	9608	9616	9625	9633
1.8	.9641	.9649	.9656	.9664	9671	9678	9686	9693	9699	9706
1.9	.9713	.9719	.9726	9732	9738	9744	9750	0756	9761	9767
2.0	.9772	.9778	.9783	9788	9793	9798	9803	0808	0812	9817
2.1	.9821	.9826	.9830	9834	9838	0842	9846	0850	0854	0857
2.2	.9861	.9864	9868	9871	9875	9878	0881	0884	0887	0890
2.3	.9893	.9896	.9898	.9901	9904	9906	0000	0011	0013	0016
2.4	.9918	.9920	.9922	9925	9927	9929	0031	0032	0034	0036
2.5	.9938	.9940	.9941	9943	9945	9946	0048	00/0	* 0051	0052
2.6	.9953	.9955	.9956	.9957	9959	9960	9961	0062	A 0063	0064
2.7	.9965	.9966	.9967	.9968	.9969	9970	0071	9972	0073	0074
2.8	.9974	.9975	.9976	.9977	.9977	.9978	9979	9979	9980	9981
2.9	.9981	.9982	.9982	.9983	9984	9984	0985	9985	0086	0086
3.0	.9987	.9987	.9987	.9988	.9988	.9989	9989	9989	9990	0000
3.1	.9990	.9991	.9991	.9991	.9992	.9992	9992	9992	9993	0003
3.2	.9993	.9993	.9994	.9994	.9994	.9994	9994	9995	9995	0005
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	9996	9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	9998
3.50	.9999			100000 maari (1000000		1 1. 1.	A A A A A A			17 N
and										2°
up						ä				
NOTE: For	values of z a	above 3.49, u	se 0.9999 for	the area.					6	
*Use these	*Use these common values that result from interpolation:							Common Critical Values		
z score	Area								Confidence	Critical
1.645	0.9500	◄							Level	Value
2 575	0 9950	-							0.90	1.645
2.313	0.7750			121					0.95	1.96
									0.99	2.575

Copyright 2007 Pearson Education, publishing as Pearson Addison-Wesley.

Find the probability that the thermometer reads - 0.28° Gor lower, when in ice water. (iii) go to z-table and read row - 0.2, col 0.08 (i)\$(ii) value = 0.3897 x=0°C answer $P(x < -0.28^{\circ}c) = 0.3897 - 38.97\%$ X = -0.28°C (b) Find the probability the readout reads greater than - 0.28°C = area \$ 1.0000-0.3897 0.3897 2=-0.28 (c) Find the probability the read out say \$ 1.39 or less area = answer positive z-score table: row 1.3 } [0.9177] col 0.09 1.39 d) Find the probability that the readout is between - 0.28 and 1.39 1.39 -0.28 2.39 -0.28 Milling -0,28 1.39 0.9177 - 0.3897 =[0.5280] OR 52.8% chance reading

S Reading the table in reverse. from the yese 75% of the themameters 0.7500 0.2500 Z= ???? We go to the body of the Z- table and look for the Evalue 0.2500 and note VOW and column and then we form the Z-score · We know plode at the neg z-scores since area to the left of 2=0.00 is less than 50% Zero Vs 220 50, Z-scres for Neg. Values page we see 0.2500 is in between two columns: NN -0.6. col 0.07 and col 0.08 0.2514 0,2483 Ans: 2= -0.675 Revice Look Up estimate J 25% of themometers between Oand 9 depending on how close read -0.675° cor our desired number is to the given number less;