Chapter 6) Discreet Probability Distributions (2) ((chpt T: Continuous Prob. Dist.)) In clipt 6 and 7 we will introduce the popular distributions of data that we see in stats. 6.11 Random Variables In algebra we use I to represent a variable Solve for X: 3x+2=4(x-1) In statistics our variables are a numerica stroutcom of an probability experiment. Let X = the number of heads that appear after tossity 5 coins on the table DI-J-X is a random Variable Examples of random variables 5. Numbers from the roll of a die - Height of a randomly chooser male · Number of Siblings it a randomly choosen family -)=(1) · Values at electricity bills in your neighbor hood

Def: Discreet Random Vars represent data that comes in chunks, or quanta ex! the number of eggs gathered in the morning Continuous Random Var represents data that allows further refinement in a value ex gallons of milk from the Cow Det) Probability distributor for a discreet that a variable's value has of being selected and at which and a first and a first a first a first a first and a first a fir 18.14 × × 102. 19 1 **/ 26** 1. B.I. indone i material material

Sum of two dice Red and Blue dice 5 6 61 51 Saycle Space ž 62 32 42 62 33 43 3 2 34 15 25 35 16 5 26 5 · Prob. Distribution Tally 12 11 10 9 Freq Sum Outcomes 11 1/36 = 0.028 · Prob. Histogram 2 2/36 = 12,21 3 13,24,31 3/36 = 4 Rel 4/36 = 0.111 5 14,23, 32,41 ea = 3 Freq 5/36 = 6 15,24,33,42,57 5 0.2 7 6/36= 16,25,34,43,52,61 5/36 = 8 26,35,44,5362 4/36= 9 36,45,5463 3/36= 10 46,55,64 4 G 2/36= 5 ((9'10 8 56,65 11 1/36= 12 66 Distribution for the sum of two dice (table) Probability 9 6 8 10 9 (111 5 2 3 2 Sum 0.138 0.166 0.138 0.111 0.0830.054 0.025 028 0.056 0.111 D. 06

@ Properties that is northern with their was such $\sum P(\mathbf{x}) = 1.0$ The way have the Ex sum of two dice LAN / STATT 0.028 +0.056 + 0.083 + 0.111 +0.138 +0.166 + 0.138 +0.111 +0.083 +0.054 +0.028 = 1.0 · area under the probability histogram is I EX P(sum = 5) = 0.111 be from the X vs. P(X) 272110 P (Sem < 5) = P (2 or 3 or 4 or 5) 200 mable = P(z) + P(3) + P(4) + P(5)= 0.028 + 0.056 + 0.08 + 0.111 = 0.389 ~ [0.39] 39% chance of rolling a sum of Sorlers area = 0.39. Ex P(sum>5 0.61 = 1 - P (sum < 5) = 1 - 0.39 = 0.61

 $\overrightarrow{ex} \cdot P(4 \leq sum \leq 7)$ $= \underline{P}(4) + \underline{P}(5) + \underline{P}(6) + \underline{P}(7)$ = 0.498 $= 0.083 \pm 0.111 \pm 0.138 \pm 0.166$ The probability of a Random Variable having a certain range of values is the hrea under the prob- distribution between those ranges vel. frez $\mathbb{P}\left(\mathsf{X}_{1} \leqslant \mathbb{X} \leqslant \mathsf{X}_{2}\right)$ = a rea between Values X, {X2 Xz ToTAL area = 1.00 & Again, the probability of a random variable tells us how frequently we can expect that outcome For discreet data, toss two dice P(sum = 4) = 0.083For continuous data we do not address like <u>P(Bessy has 4 gal. of milk hoday</u>) only ranger 3.8-4.2g

mean value of a Random Variable B $5 \mathbf{X} \cdot \mathbf{\hat{r}}(\mathbf{x})$ 1 X Two dice Problem : Find the mean $\mathcal{M}_{\mathbf{X}} = 2 \cdot (0.028) + 3(0.055) + 4(0.083) + 5(0.111)$ + 6 (0.138) + 7 (0.166) + 8 (0.138) + 9 (0.111) + 10 (0.083)Znd Ex 11 (0.055) + 12 (0.028) NX

Ex A computer Monitor is rarely perfect as the are over a million pixels on the screen. The following sampling process yielded the prob. table • Prob. Histogram 0.54 0.2· mean of X = mean detective pixels $M_{\rm X} = \sum {\rm X} \cdot {\rm P}({\rm X})$ = O(0.2) + 1(0.5) + 2(0.2) + 3(0.1)= 1.2 def. Pixels Law of Large numbers * This is also called the Expected Value, Ex Consider a sample of 10 monitors Order these manitors $M_{\overline{X}} = 1.$

The law of large Numbers tells us that the larger the sample the closer our actual number are to the expected (mathematical) numbers The mean of a random variable, Mx, is the mean of the population's variable population $M_{X} = \sum X \cdot P(X) - \mu fr$ $\frac{\pm \frac{1}{2}}{\int \frac{1}{2} \frac{1}{$

,

•

let X be the number of boys in 2 - EX family of 5 children. Theoretically, given 2 50:50 chance of a boy being born, we produce the following probability table: Num $V_{\text{F}} \rightarrow X 0 (1 2 7 4 5)$ P(X) 0.031 0.156 0.312 0.313 0.156 0.031is ZiP(x)=1 yes 1.0 exactly (no rounding . Test: · Q: What is the expected number of boys born in a family #/ 5 children? $\mathcal{M}_{\mathbf{x}} = \mathbf{\Sigma} \mathbf{X} \cdot \mathbf{P}(\mathbf{X})$ $= 0 \cdot (0.031) + 1 \cdot (0.156) + 2 \cdot (0.313) + 3 \cdot (0.313)$ + 4.(0.156) + 5.(0.031)= 2.50 E(I)= Z.50, not unexpected Since we have 5 children and a 50:50 chance if a Boy.

O Variance et a Random Variable Recall variance (std. dev.) shows how spread out data is Def! The Variance of a random var is $\mathcal{O}_{\mathbf{X}}^{2} \quad \mathbb{Z} \left[\mathbb{X} - \mathcal{U}_{\mathbf{X}} \right]^{2} \cdot \mathbb{P}(\mathbb{X})$ where $M_{\overline{X}} = \sum \overline{X} \cdot P(\overline{X})$ an often easier formula is $\mathcal{O}_{\mathbf{X}}^{2} = \sum \mathbf{X}^{2} \cdot \mathbf{\hat{\Gamma}}(\mathbf{X}) - (\mathcal{M}_{\mathbf{X}})^{2}$ Def: the standard deviation of a random var. $O_{\overline{X}} = \int O_{\overline{X}}^2$ Ex Defective Pixels Problem revisited } previou example $\frac{X}{P(x)} = 0.2 = 0.5 = 0.2 = 0.1$ $\int \mathcal{M}_{\mathbf{x}} = 1.2$ use a table to compute OX $X = |X - M_{R}| (X - M_{R})^{2} | P(X) | (X - M_{I})^{2} P(X)$ 0 - 1.2 = -1.2 1.44 * 0.2 0.288 (- (.2= -0.2 0.04 × 0.5 0.020 2-2.2=0.8 0.64 0.2 * 0.128 3-2.2=1.8 3.24 0.1 1 = * 0.324 + 0x = 0.760 and the Stb. der = 50.760 = 0.870 0.760

Roulette Table plus also a 18 red , "Of OC 18 Llack , "Of OC · 38 pockets: 1-36-21 e We bet \$1 on red . If red comes up your foremore tollar. get the dollar back o If black or green come yo you win -\$1" (youloose the dollar) $\frac{41}{18/38} = \frac{-1/+1}{0.53}$ $\frac{X}{P(X)} = \frac{-1}{18+2} + \frac{18}{26}$ Sotten the expected winning are $\overline{C}(\overline{X}) = \mu_{\overline{X}} = \overline{X}_{i} \cdot P(\overline{X}_{i}) + \overline{X}_{2} \cdot P(\overline{X}_{i})$ $= \left(-1\right)\left(\frac{20}{38}\right) + \left(+1\right)\left(\frac{18}{38}\right)$ = - 2 38 = (-0.0526) House always · We see an expected loss. That is everytime we play we expect a 5.26¢ logs

EX Mineral Economists estimate à mining venture
has a for4 probability of \$30 million loss
0.5 probability of 20 million profit
0.1 prob. of \$40 million profit.
•What is the expected largings every time they start mining ?
X -30M +20M +40M P(X) 0.4 0.5 0.1
So the expected profit is
$E(\mathbf{X}) = \mathbf{X}_{1} P(\mathbf{X}_{1}) + \mathbf{X}_{2} P(\mathbf{X}_{2}) + \mathbf{X}_{3} P(\mathbf{X}_{3})$
(=) = (-30M)(0.4) + (20M)(0.5) + (40M)(0.1)
E(I) = 2M profitable, otherwise they would
not start

I

.