11.2 Hyp. Test for the difference between
two proportions
(Notation)
P1 & P2 are pop. projections

$$\hat{p}_{1} \neq \hat{p}_{2}$$
 are sample proportions
 $\hat{x}_{1} \neq \hat{x}_{2}$ are number of success
 $\hat{n}_{1} \notin \hat{x}_{2}$ are number of success
 $\hat{n}_{1} \notin \hat{x}_{2}$ are number of success
 $\hat{n}_{1} \notin \hat{x}_{2}$ are sample respecting
 $\hat{n}_{1} \notin \hat{n}_{2}$ are sample sizes
(Assumptions)
1. both samples must be S. RS
2. each population must be 20
times large, or more than the sample
 $3.$ There are two categories in each
 $3.$ There are two categories in each
 $5.$ each sample has 10 successons $\frac{1}{10 \text{ fm}_{1} \text{ fm}_{2}}$
 $\hat{n}_{2} = 1 - \hat{p}$
 $\hat{z}_{2} = (\hat{p}_{1} - \hat{p}_{2}) - 0$
 $\hat{z}_{1} = (\hat{p}_{1} - \hat{p}_{2}) - 0$
 $\hat{z}_{1} = (\hat{p}_{1} - \hat{p}_{2}) - 0$
 $\hat{z}_{2} = (\hat{p}_{1} - \hat{p}_{2}) - 0$
 $\hat{z}_{1} = (\hat{p}_{1} - \hat{p}_{2}) - 0$
 $\hat{z}_{2} = (\hat{p}_{1} - \hat{p}_{2}) - 0$
 $\hat{z}_{1} = (\hat{p}_{1} - \hat{p}_{2}) - 0$

(*less critical as n increases)

Hypothesis $H_0: P_1 = P_2 \text{ or } P_1 - P_2 = 0$ HA: PIZPE or PIZPE or PIZPE two left right tail tail tail Ex Are older, more experienced workers, less likely to use computers at work VS. younge workers? Gen. Social Survey shows . 259 of 350 worker in the 25-40 yr. use computer to do their work Pop(1) . 384 of 500 workers in the 41-65 yr used computer to do their work. UCL x= 0.05 POPE Test to see if younge workers use computers more frequently than older workers. preliminary observations $P_1 = \frac{259}{350} = 0.74$ young $\hat{P}_2 = \frac{384}{500} = 0.768$ old P1-P2 is -0.028 So the survey actually shows the older gen is using compt. mad.

Do younger workers use computers more than old
Data from our survey
Sayde Size we acomputer proportion

$$(3) \frac{5ize}{25-40yo}$$
 $(x_i=259) \frac{1}{7} \frac{1}{7} \frac{1}{259} \frac{1}{350} \frac{1}{7} \frac{1}{7} \frac{1}{259} \frac{1}{350} \frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{259} \frac{1}{350} \frac{1}{7} \frac{1}{10} \frac{1}{10}$

	ЦТ	7-	0 - 0 0	ti	(7 - 4)	able
		CPQp ~	propo	FIDNJ	(
TABLE A-3	t Distribution	: Critical t Values	•			1
	our exa	mple is an	Area in One Tai	"test case	ewith	
	0.005	0.01	0.025	x=0.05	0.10	
Degrees of			Area in Two Tail	5		
Freedom	0.01	0.02	0.05	0.10	0.20	
			10.50%	6214	3.078	
1	63.657	31.821	12.706	2 920	1.886	
2	5.8.11	0.905	4.505	2.353	1.638	
4	4 604	3 747	2 776	2.132	1.533	
5	4.004	3 365	2.571	2.015	1.476	
6	3 707	3.143	2.447	1.943	1.440	
7	3.499	2.998	2.365	1.895	1.415	
8	3.355	2.896	2.306	1.860	1.397	
9	3.250	2.821	2.262	1.833	1.383	
10	3.169	2.764	2.228	1.812	1.372	
11	3.106	2.718	2.201	<mark>1.79</mark> 6	1.363	
12	3.055	2.681	2.179	1.782	1.356	
13	3.012	2.650	2.160	1.771	1.350	
14	2.977	2.624	2.145	1.761	1.345	
15	2.947	2.602	2.131	1.753	1.341	
16	2.921	2.583	2.120	1.746	1.337	
17	2.898	2.567	2.110	1.740	1.333	
18	2.878	2.552	2.101	1.734	1.330	
19	2.861	2.539	2.093	1.729	1.325	
20	2.845	2.528	2.086	1.725	1 323	
21	2.831	2.518	2.080	1.721 1.717	1.321	
22	2.819	2.508	2.074	1.714	1.319	
23	2.807	2.500	2.009	1 711	1.318	
24	2.191	2.492	2.004	1.708	1.316	
25	2.787	2.405	2.000	1.706	1.315	
20	2.779	2.473	2.052	1.703	1.314	
27	2.763	2.467	2.048	1.701	1.313	
20	2.756	2.462	2.045	1.699	1.311	
30	2.750	2.457	2.042	1.697	1.310	
31	2.744	2.453	2.040	1.696	1.309	
32	2.738	2.449	2.037	1.694	1.309	
34	2.728	2.441	2.032	1.691	1.307	
36	2.719	2.434	2.028	1.688	1.306	
38	2.712	2.429	2.024	1.080	1.304	
40	2.704	2.423	2.021	1.670	1.301	
45	2.690	2.412	2.014	1.676	1 299	
50	2.678	2.405	2.009	1.673	1.297	
55	2.668	2.390	2.004	1.671	1.296	
60	2.000	2.590	1.997	1.669	1.295	
65	2.034	2.381	1.994	1.667	1.294	
70	2.040	2.377	1.992	1.665	1.293	
80	2.639	2.374	1.990	1.664	1.292	
90	2.632	2.368	1.987	1.662	1.291	
100	2.626	2.364	1.984	1.660	1.290	
200	2.601	2.345	1.972	1.653	1.286	
300	2.592	2.339	1.968	1.650	1.284	
400	2.588	2.336	1.966	1.649	1.284	W.
500	2.586	2.334	1.965	1.648	1.283	
750	2.582	2.331	1.963	1.04/	1.203	
1000	2.581	2.330	1.902	1.646	1.202	-
2000	2.578	2.328	1.901	1.645	1.282	
Large	2.576	2.320	1.900	1.045	1.000	

Copyright 2007 Pearson Education, publishing as Pearson Addison-Wesley.

Step 7: Statdisk Analysis > hyptesting -> proportion two samples · select P. >Pr · Keep x=0.05 {significance} · Sample 1 N = 350 $X_{1} = 25-9$ Nz= 500 · Sayel 2 X2 = 384 Evaluate Results HA: PI > P2 (right tail) Ztest stat = (-0.93604) p-value = (0.825), this is (very large since Pi< Piz to start with and yet) We use asked to test P. 7. Pr, nevertheless / such a sample could still result Z test - 0.94 Z crit = 1.645