Functions of Inverse Exponentials Graph ax is $(l, \alpha)/$ a 1-to-1 function (0,1) (-1, 1/a) (a,1) then we have a Function that has (40) an inverse function [(1,-1) Table) x (f-'(x) = a^ 1/a 1a 0 a analytical we know what the graph of the invire of at looks like, but we seek an analytical description of it: the $f(x) = a^{\lambda}$ 11/2-5 y = ax ····2. ${\mathbb C}^{k_{1}}_{i}$ X=aY 3. Solve for y Hmm 4 \Rightarrow invent a new funchi $f'(x) \equiv log_a(x)$ $Y = log_a(x)$ base, ax, has reach f'(x) = log_(x) 5. its own inverse

Base property of the logarithm: · al function / function inverse pairs have the following property: $(f \circ f^{-1})(x) = x$ $(f^{-1}\circ f)(x) = x$ · specifically , if f(x)=ax & f - (x)=log_a(x) the aloga(x) = x $log_a(a^x) = x$ and

. بر ا

-

& Equivalent principle_exponent $a^{x} = b \iff \log_{a}(b) = x$ exponents Write $4^{x} = y$ as a logarithm: a = 4 b = y = 3 $\log_{4}(y) = x$ $\frac{1}{5} If 2^{m} = 128 \quad \text{what is}$ $\int \log_2(128) = m$ m ?] write q = 8 as a logarithm: $log_a(8) = 3$ A Nomenclature

log 10 (X) is just written as log (X) is just written as ln(x)loge(x) "Natural Log" (warning: in some alderst foreign texts log(X) y is our ln(X).

O writing logs as exponents Ex Convert log_ (x) = 2 into an exponent a=5 ₹ 5² = X we just ' Solved for x" Hey 52 is 25 ... so Note: (095 (25) = 2]? yes Ex Solve for x: logs (x) = 3 equivalant problem: 5³ = X -> X=125 { Note: log (125) = 3 } = X Solve for $X : \log_2(x) = 128$ equir. prob: 228 = X Biz # Calc: 3.4028×1038 2 4× 128 E

Solving log problems via Equit. Prob.
Solving log problems via Equit. Prob.
Solve log_a (X) = b
write equiv. prob.
$$q^{b} = x$$
So Evaluating a log problem with out a calculate
EX Evaluate log₁₀ (100)
W/ calculator: log (100)
W/ calculator: equit. Problem
(i) but 1st assign "x" to log₁₀ (100)
So log₁₀ (100) = X
(ii) equiv. Prob 10^x = 100
(iii) State x form experience : [X = 2]
Eval log₃ (81)
(i) log₁ (81) = x
(ii) 3^x = 81
(iii) 3^x = 81
(iii) 10^x = 100
(iii) 3^x = 81
(iv) 10^x = (3^x)² = 9² = 81

6 Solve for X: log_(3x+4)=4 =Prob: 24 = 3x+4 16 = 3x + 412 = 3x× = 4 $\frac{E \times E \times E \times E}{(i) \log (100^{\text{F}})} = \chi$ 100 (yx 8 = LOG (ii) $10^{*} = 100^{*}$ > 16 $\left| 0^{\times} = \left(\left| 0^{z} \right| \right)^{8}$ (iii) $0^{x} = (0^{16})^{x}$ Ex Evaluate log(0.001) (i) $\log(0.001) = \chi$ 0.001 [L06](ii) $10^{\chi} = 0.001$ - - 3 (iii) $10^{x} = 10^{-3}$ (x = -3)

Solve for x ln (2x+1) = 2 EX $C^2 = Z \times + ($ (E.Prob.) $e^{2} - 1 = 2x$ $x = \frac{e^2 - 1}{2} exact answer.$ X ~ 3.1945 approx. answer -> 7.38905... 2 [2nd (ex) =1(= = 2= ->3.1945