*In Problems 1-6, determine the domain for each function.* Show some work. *Write your answers in interval notation.* 

 $1. \quad f(x) = x^2 - 4$ 

1. \_\_\_\_\_(2pts.)

2.  $f(x) = \sqrt{4 - \frac{1}{2}x}$ 

2. \_\_\_\_\_(4pts.)

 $3. \quad f(x) = \frac{5x}{x^2 - 4x - 12}$ 

3. \_\_\_\_\_(4pts.)

 $4. \quad f(x) = \log_4\left(\frac{1}{5} - 2x\right)$ 

4. \_\_\_\_\_(4pts.)

5.  $f(x) = 2^{x-5}$ 

5. \_\_\_\_\_(2pts.)

 $6. \quad f(x) = \frac{2x+5}{4x^2+25}$ 

6. \_\_\_\_\_(2pts.)

| Name: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

- 7. Let  $f(x) = -x^2 + 3$ ,  $g(x) = \frac{x}{x-2}$  and  $h(x) = \frac{2}{x+1}$ . Find the given new functions, simplify your answers.
- a)  $(g \circ h)(x)$

7a. \_\_\_\_\_(5pts.)

b)  $g^{-1}(x)$ 

7b. (6pts.)

c) f(g(-4))

7c. \_\_\_\_\_(3pts.)

- 8. One number, n, is 6 less than the quarter of the second number, m. Find the numbers for which the <u>product</u> is a minimum. Then, find the minimum product.
  - a) Write the equation of the function describing the product and then, find the numbers.

8a. 
$$P(n) =$$
 (6pts.)

b) Find the minimum product.

8b. \_\_\_\_(2pts.)

## **Expressions**

In Problems 9-13, simplify each expression. Assume that the variables represent any real numbers.

9.  $\sqrt{16x^{10}y^9z^5} \times \sqrt{8x^{-4}y^{-2}z}$ 

9. \_\_\_\_\_(5pts.)

10.  $\frac{\sqrt[3]{625x^{10}y^9z^{10}}}{\sqrt[3]{5x^4y^2z^{-3}}}$ 

10. \_\_\_\_\_(5pts.)

11.  $(-64)^{-\frac{2}{3}}$ 

11. \_\_\_\_\_(3pts.)

 $12. \quad \frac{2xyz}{\sqrt[4]{4x^2y^3z}}$ 

12. \_\_\_\_\_(5pts.)

13.  $\sqrt{50x^4} - \sqrt{18x^4} + 2x^2\sqrt{27x} - \sqrt{75x^5}$ 

13. \_\_\_\_\_(6pts.)

| Name: |  |  |  |
|-------|--|--|--|
| ranno |  |  |  |

- 14. Perform the indicated operations and write the answers in the form a + bi.
  - a)  $\frac{-5+i}{5+i}$

14a. \_\_\_\_\_(4pts.)

b)  $\left(\frac{1}{2} - \sqrt{-16}\right) \left(-4 + \sqrt{-36}\right)$ 

14b.\_\_\_\_(4pts.)

- 15. Evaluate the exact value of each expression.
- a)  $\log_{16} 64$

15a. \_\_\_\_\_(2pts.)

b)  $10^{\log 4 - \log 1/2}$ 

15b. \_\_\_\_\_(2pts.)

c)  $\ln(e)^{x^2+1}$ 

- 15c. \_\_\_\_\_(2pts.)
- 16. Write the logarithmic expression as the sum or the difference of logarithms.

$$\ln\left(\frac{e^{2x}x^4y^6}{\sqrt[4]{z}}\right)^{1/2}$$

16. \_\_\_\_\_(4pts.)

17. Write the expression as a single logarithm with coefficient 1. Simplify if possible.

$$12\log\sqrt[4]{x} + 6\log\sqrt{x} - 6\log x$$

## **Equations and System of Equations**

18. Solve for x: 
$$2-|2x-10| = -8$$
 (interval notation)

19. Solve for x: 
$$\sqrt{x+1} + 5 = x$$

20. Solve by the quadratic formula. Complex numbers as solutions are allowed.  $2x^2 - 6x + 5 = 0$ 

21. Solve for x: 
$$3^{x+1} 3^x = \frac{1}{27}$$

21. \_\_\_\_\_(7pts.)

22. Solve for x: 
$$\log_4 x + \log_4 (x+6) = 2$$

22. \_\_\_\_\_(7pts.)

## **Inequalities**

In Problems 25-28, solve each inequality. Write the solution set using interval notation and graph it.

23. 
$$\frac{2}{3}x - 2 < -4$$
 or  $2 - \frac{1}{2}x \le -1$ 



24. 
$$3-2|2x-1| \ge -9$$

24. \_\_\_\_\_(7pts.)



25. 
$$x^2 + 8x \le -15$$

| Name: |         |
|-------|---------|
| 25.   | (7pts.) |



$$26. \qquad \frac{4x-7}{x-4} \ge 3$$



27. Graph  $f(x) = -\sqrt{x+3} + 4$ . Give the domain and range of the function.

(7pts.)



Domain: \_\_\_\_\_

Range:

28. Graph f(x) = -4 + |x+2|. Give the domain and range of the function.

(7pts.)



Domain:\_\_\_\_\_

Range:

29. Graph  $f(x) = x^2 + 6x + 10$ . Give the vertex, x-and y-intercepts, domain and range of the function. (10pts.)



Range:

(6 pts.)

30. Graph the circle.  $2x^2 - 12x + 2y^2 - 4y + 12 = 0$ 





32. Graph the hyperbola  $16x^2 - 9y^2 = -144$ . Write the slopes of the asymptotes. (6pts.)



Name:

33. Graph  $f(x) = \left(\frac{1}{4}\right)^x - 2$ . Give the domain & range of the function. Write the eqn of the asymptote. (7pts.)



Domain:\_\_\_\_

Range:

34. *Graph*  $g(x) = \log_3 x$ . *Give the domain and range of the function. Write the eqn of the asymptote.* (7pts.)



Domain: \_\_\_\_\_

Range:

## **Sequences**

35. Write a formula for the nth term of the sequence.

$$-1, \frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, \dots$$

35. \_\_\_\_(4pts.)

36. Express the sum using summation notation. {Hint:  $1 = 3^0$  }

$$-1+3-9+27-81+243-729$$

36. \_\_\_\_\_(4pts.)

37. Find the first four terms of the given sequence.  $a_n = (-1)^n \frac{n!}{(n-1)!}$  37. \_\_\_\_\_(4pts.)