
Calculus II, Section 9.3, #30

Separable Equations

Find the orthogonal trajectories of the family of curves. Use a graphing device to draw several members of

each family on a common screen.1

y2 = kx3

First, we find the slopes of the given family.
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From y2 = kx3 we get k = y2

x3 . Substituting,
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This equation gives the slope of the original family at any value (x,y). Then the slope of the orthogonal
(perpendicular) line must be
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and we solve this differential equation to get the equation for the family of orthogonal trajectories.
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C1 is a constant.
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1Stewart, Calculus, Early Transcendentals, p. 605, #30.
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Thus the family of orthogonal trajectories for y2 = kx3 is a family of ellipses of the form
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