Sec. 10.5 Constant Coefficient Homogeneous Systems (part 2)

Repeated eigenvalues

Suppose that the nxn matrix A has an eigenvalue A of multiplicity 2 or higher and the associated
eigenspace has dimension 1, so all associated eigenvectors are scalar multiples of an eigenvector V. Then
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are linearly independent solutions of )’ = 4 y, where

o The eigenpair (A,\E) is a solution to
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The generalized vector w is obtained as a solution to the following matrix equation
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Ex. Find the general solution of the system y = 9 V.

Answer: Set up the eigenvalue problem:
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Compute the eigenvalues:
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We have a repeated eigenvalue.



The first eigenvector is obtained from:
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Dividing the first equation by 5 and the second by 2 we obtain:
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There are infinitely many choices (as long as we obtain a non-zero eigenvector). For simplicity, pick x, =2,
then x; =5.
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The second solution is obtained as:
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After dividing the 1% equation by 5 and the 2" equation by 2, we obtain
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The simplest choice is to pick x, = 0 (a zero value is allowed since this time it does not result in a zero
eigenvector).
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Finally,
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