Sec. 10.4 Constant Coefficient Homogeneous Systems

We seek a solution to the homogeneous system of *n* first order linear equations with constant coefficients:

$$y'_{1} = a_{11}y_{1} + a_{12}y_{2} + K + a_{1n}y_{n}$$

$$y'_{2} = a_{21}y_{1} + a_{22}y_{2} + K + a_{2n}y_{n}$$

$$M$$

$$y'_{n} = a_{n1}y_{1} + a_{n2}y_{2} + K + a_{nn}y_{n}$$

In **normal form**, this system can be written as:

where

Suppose that $\det A \neq 0$.

Consider the case when n = 1. In such case our system reduces to a single scalar equation, so we have:

$$y' = a y$$

This is a first order linear homogeneous equation with constant coefficients (y'-ay=0), so we seek the solution in the form $y=e^{rt}$, and after we substitute this into the equation, we would obtain r=a, so the general solution would be of the form

$$y = ce^{at}$$

Consider the case when n > 1. In the same manner as in the one-dimensional case, we can seek equilibrium solutions for the higher-dimensional case y' = A y. Since we have a homogeneous system with constant coefficients, we will seek the solution in the form:

$$\begin{vmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{y} = \mathbf{v} e^{\lambda t} \end{vmatrix} \Rightarrow \mathbf{y}' = \mathbf{v} \lambda e^{\lambda t}$$

Substituting this into the above system (1), we obtain the eigenvalue problem of the matrix A:

$$\left. \begin{array}{c} \overset{r}{y} = \overset{r}{v} e^{\lambda t} \\ \overset{r}{y} = \overset{r}{v} \lambda e^{\lambda t} \end{array} \right\} \quad \Rightarrow \quad A \overset{r}{y} = \overset{r}{y'} \quad \Leftrightarrow \quad A \overset{r}{v} e^{\lambda t} = \overset{r}{v} \lambda e^{\lambda t} \quad \Leftrightarrow \quad \underbrace{A \overset{r}{v} = \lambda \overset{r}{v}}_{}$$

Definition: Eigenvalues and Eigenvectors

Let $A = [a_{ii}]$ be a square matrix of size $n \times n$, with constant coefficients. Consider the equation:

$$A_{\nu}^{1} = \lambda_{\nu}^{1}$$

Then

- The (real or complex) numbers λ represent the eigenvalues of A .
- $^{ t t t t t}$ The associated nontrivial vectors $\overset{ t t t t}{ m t t}$ represent the <u>eigenvectors</u> of A .

This is a homogeneous system of the form Mx=0, which has nontrivial solutions provided that $M=A-\lambda I$ is a singular matrix. Hence, we assume that $\det M=\det \left(A-\lambda I\right)=0$.

How do we solve an eigenvalue problem?

$$A_{v}^{r} = \lambda_{v}^{r} \iff A_{v}^{r} - \lambda_{v}^{r} = 0$$

$$\Leftrightarrow (A - \lambda I)_{v}^{r} = 0$$

$$\Rightarrow \det(A - \lambda I) = 0$$

A is an $n \times n$ matrix, so the equation $\det(A - \lambda I) = 0$ reduces to finding the roots of an n^{th} degree polynomial. This equation is called the **characteristic equation** of A. The polynomial $p(r) = \det(A - \lambda I)$ represents the **characteristic polynomial** of A.

How to apply the solutions of the eigenvalue problem to a system of DEs?

Let A be a $n \times n$ constant matrix with n linearly independent eigenvectors v_1 , v_2 ,..., v_n and associated eigenvalues λ_1 , λ_2 ,..., λ_n . Then, for a homogeneous system y'(t) = A y(t), the fundamental solution set of on $(-\infty,\infty)$ is the set

$$\left\{e^{\lambda_1 t} \begin{array}{c} \mathbf{u} \\ v_1, e^{\lambda_2 t} \end{array} \begin{array}{c} \mathbf{u} \\ v_2, \mathbf{K} \end{array}, e^{\lambda_n t} \begin{array}{c} \mathbf{u} \\ v_n \end{array}\right\}$$

so the general solution is of the form

$$\mathbf{w} \\ y(t) = c_1 \cdot e^{\lambda_1 t} \mathbf{v}_1 + c_2 \cdot e^{\lambda_2 t} \mathbf{v}_2 + \mathbf{K} + c_n \cdot e^{\lambda_n t} \mathbf{v}_n$$

where c_1 , c_2 , ..., c_n are arbitrary constants.

Ex.1 Consider the following system in a matrix form:

$$\mathbf{w}' = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix} \mathbf{w}, \quad \mathbf{w} \\ y(0) = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

a) Find the eigenvalues and the eigenvectors of the matrix $A = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$.

$$A\vec{v} = \lambda\vec{v} \implies A\vec{v} - \lambda T\vec{v} = \vec{0}$$

$$(A - \lambda I)\vec{v} = \vec{0}$$

A homogeneous system has nontrivial solutions if the determinant of the system is equal to zero:

$$\begin{aligned}
\operatorname{clet} M &= 0 &= \rangle & \begin{vmatrix} 2-\lambda & 4 \\ 4 & 2-\lambda \end{vmatrix} &= 0 \\
\begin{vmatrix} -(\lambda-2) & 4 \\ 4 & -(\lambda-2) \end{vmatrix} &= (\lambda-2)^2 - 16 &= 0 \\
\lambda^2 - 4\lambda + 4 - 16 &= 0 \\
\lambda^2 - 4\lambda - 12 &= 0 \\
(\lambda - 6)(\lambda + 2) &= 0
\end{aligned}$$

$$\lambda_1 = 6$$

Next, for each of the two eigenvalues we find a corresponding eigenvector.

$$\frac{\lambda = 6}{\begin{bmatrix} 2-6 & 4 \\ 4 & 2-6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 2-(-2) & 4 \\ 4 & 2-(-2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
\begin{bmatrix} -4 & 4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
\begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
-4x_1 + 4x_2 = 0 \\
4x_1 + 4x_2 = 0 \\
4x_1 + 4x_2 = 0
\end{aligned}$$

$$\frac{4x_1 + 4x_2 = 0}{4x_1 + 4x_2 = 0}$$

$$x_1 = x_2$$

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

b) Using the solution to the eigenvalue problem of the given matrix that you found in the previous part, determine the solution to the following IVP:

The two solutions from the previous part are:

$$\vec{y}_1 = \vec{v}_1 \cdot e^{\lambda_1 t} = \begin{bmatrix} i \end{bmatrix} e^{6t}$$

$$\vec{y}_2 = \vec{v}_2 \cdot e^{\lambda_2 t} = \begin{bmatrix} -1 \end{bmatrix} e^{-2t}$$

Thus the general solution is

$$\vec{y} = c, \vec{y}_1 + c_2 \vec{y}_2 = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{6t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

We determine the constants from the initial condition for the vector $\overset{1}{v}$.

$$\vec{y}(0) = \begin{bmatrix} 5 \\ -1 \end{bmatrix} \Rightarrow c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

$$c_1 - c_2 = 5$$

$$c_1 + c_2 = -1$$

$$2c_1 = 4 \Rightarrow c_1 = 2$$

$$c_2 = -1 - c_1 \Rightarrow c_2 = -3$$

Thus,

$$\vec{y} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{6t} - 3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2e^{6t} + 3e^{-2t} \\ 2e^{6t} - 3e^{-2t} \end{bmatrix}$$

The two 1-dimensional solutions (corresponding to the components of the vector solution \dot{y}) are:

$$y_1(t) = 2e^{6t} + 3e^{-2t}$$

 $y_2(t) = 2e^{6t} - 3e^{-2t}$

Ex. 2 Consider the following 2-dimensional initial-value problem:

$$\begin{matrix}
 r_{y'} = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \begin{matrix}
 r_{y'} \\
 y
 \end{matrix}, \quad \begin{matrix}
 r_{y'}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}
 \end{matrix}$$

a) Write the system in expanded form so that you have two differential equations of first order, with two initial conditions.

(1)
$$y_1' = 5y_1 - y_2$$
, $y_1(0) = 2$
(2) $y_2' = 3y_1 + y_2$, $y_2(0) = -1$

b) Combine the equations to obtain a second order IVP, in terms of one of the functions. Solve the IVP and then use the result to determine the solution for the other function.

From (1):

$$y_2 = 5y, -y'_1 = y_2' = 5y,' -y,''$$

Substitute into (2):

the into (2):

$$y_2' = 3y, + y_2 \quad \text{(a)} \quad (5y, '-y, '') = 3y, + (5y, -y, ')$$

$$y_1'' - 6y, ' + 8y, = 0$$
Initial conditions are obtained from the system: $y_1(0) = 2$ and $y_1'(0) = 5y_1(0) - y_2(0) = 5(2) - (-1) = 11$

$$y_1'' - 6y, ' + 8y, = 0$$

$$y_1(0) = 2, \quad y_1(0) = 11$$

$$y_1'(0) = 5y_1(0) - y_2(0) = 5(2) - (-1) = 11$$

Solve the second order IVP:

$$y_{1} = e^{rt} = y_{1}' = re^{rt}$$

$$y_{1}'' = r^{2}e^{rt}$$

$$(r^{2}-6r+8)e^{rt} = 0$$

$$(r-4)(r-2) = 0 \Rightarrow r = 4 \quad y_{11} = e^{ht}$$

$$y_{12} = e^{2t}$$

$$y_{13} = c_{1}e^{4t} + c_{2}e^{2t}$$

$$y_{1}(0) = 2 \Rightarrow c_{1} + c_{2} = 2 \quad /(-2)$$

$$y_{1}' = 4c_{1}e^{4t} + 2c_{2}e^{2t}$$

$$y_{1}'(0) = 11 \Rightarrow 4c_{1} + 2c_{2} = 11$$

$$2c_{1} = 7 \Rightarrow c_{1} = \frac{7}{2}$$

$$c_{2} = 2 - c_{1} \Rightarrow c_{2} = 2 - \frac{7}{2} = -\frac{3}{2}$$

Thus,

$$y_{1(t)} = \frac{7}{2}e^{4t} - \frac{3}{2}e^{2t}$$

Back-solve for the second function:

$$y_{2} = 5y_{1} - y_{1}' = 5\left(\frac{7}{2}e^{ht} - \frac{3}{2}e^{2t}\right) - \left(14e^{4t} - 3e^{2t}\right)$$

$$= \left(\frac{35}{2} - 14\right)e^{ht} + \left(-\frac{15}{2} + 3\right)e^{2t}$$

$$= \frac{7}{2}e^{4t} - \frac{9}{2}e^{2t}$$

c) Find the eigenvalues and the eigenvectors of the matrix $A = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}$.

- Matrix eigenvalue problem:

A
$$\vec{v} = \lambda \cdot \vec{v}$$

(=) $(A - \lambda I) \vec{v} = 0$ =) $|A + \lambda I| = 0$

=) $|5 - \lambda - 1| = |-(\lambda - 5) - 1| = (\lambda - 5)(\lambda - 1) + 3 = 0$

Hence,

$$\lambda^{2}-6\lambda+8=0$$

$$(\lambda-4)(\lambda-2)=0$$

$$\lambda_{1}=4$$

$$\lambda_{2}=2$$

$$\frac{\lambda_{1}=4}{(A-\lambda \vec{1})} \cdot \vec{v} = 0$$

$$\frac{\lambda_{2}=2}{(A-\lambda \vec{1})} \cdot \vec{v} = 0$$

$$\frac{\lambda_{1}=4}{(A-\lambda \vec{1})} \cdot \vec{v}$$

d) Use the result from the previous part to solve the given IVP in matrix form.

$$\begin{matrix}
 r_{y'} = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \begin{matrix}
 r_{y'} \\
 y
 \end{matrix}, \quad \begin{matrix}
 r_{y'}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}
 \end{matrix}$$

Recall, to solve

we seek the solution as:

$$\vec{y} = \vec{v} \cdot e^{\lambda t} \Rightarrow \vec{y}' = \vec{v} \cdot \lambda e^{\lambda t}$$

Substituting this into (\square), we obtain the eigenvalue problem of the matrix A:

$$\vec{y}' = A\vec{y}$$

$$(=) \vec{v} \cdot \lambda e^{\lambda t} = A (\vec{v} \cdot e^{\lambda t})$$

$$(=) (\lambda \cdot \vec{v}) \cdot e^{\lambda t} = (A\vec{v}) e^{\lambda t}$$

$$(=) A\vec{v} = \lambda \cdot \vec{v}$$

Thus, the value of the parameter in (\square) is an eigenvalue λ of the matrix A while the vector v corresponds to an eigenvector of the matrix A. From the previous part we have

$$\lambda_1 = 4$$
, $\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $\lambda_2 = 2$, $\overrightarrow{v_2} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

Hence, the general solution is

$$\vec{y}(t) = c_1 \vec{v_1} e^{\lambda_1 t} + c_2 \vec{v_2} e^{\lambda_2 t} = c_1 (1) e^{4t} + c_2 (1) e^{2t}$$

We also need to determine the constants:

$$\vec{y}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \Rightarrow \begin{pmatrix} c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$c_1 + c_2 = 2 \quad / \cdot (-1)$$

$$c_1 + 3c_2 = -1$$

$$2c_2 = -3 \Rightarrow c_1 = 2c_2 = 2$$

$$c_1 = 2 - c_2 \Rightarrow c_1 = 2 + \frac{3}{2} \quad c_1 = \frac{7}{2}$$

Thus, the vector solution is:

$$y(t) = \frac{3}{2} (1) e^{4t} - \frac{3}{2} (3) e^{2t}$$

The single solutions are:

$$\vec{y}(t) = \begin{pmatrix} \frac{4}{2}e^{4t} - \frac{3}{2}e^{2t} \\ \frac{7}{2}e^{4t} - \frac{9}{2}e^{2t} \end{pmatrix} = y_1(t) = \frac{7}{2}e^{4t} - \frac{3}{2}e^{2t}$$

$$y_2(t) = \frac{7}{2}e^{4t} - \frac{9}{2}e^{2t}$$

which matches the earlier obtained solutions.

e) Verify that the vector you obtained is a solution to the given IVP. First, we need to verify that the solution satisfies the initial condition:

$$\vec{y}(0) = \frac{7}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7/2 \\ 7/2 \end{pmatrix} - \begin{pmatrix} 3/2 \\ 9/2 \end{pmatrix} = \begin{pmatrix} 4/2 \\ -2/2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Next, we need to verify that the solution satisfies the matrix equation $\overset{\mathbf{r}_{\prime}}{y} = A\overset{\mathbf{u}}{y}$.

LHS:
$$\vec{y}' = \frac{7}{2} ('_1) \cdot 4e^{4t} - \frac{3}{2} ('_3) \cdot 2e^{2t}$$

$$= 14 ('_1) e^{4t} - 3 ('_3) e^{2t}$$

$$= ('_14) e^{4t} - ('_3) e^{2t}$$

$$= ('_14) e^{4t} - ('_3) e^{2t}$$

$$= \frac{7}{2} \cdot ('_3) \cdot ('_1) e^{4t} - ('_3) \cdot ('_3) e^{2t}$$

$$= \frac{7}{2} \cdot ('_4) e^{4t} - ('_3) e^{2t}$$

$$= ('_14) e^{4t} - ('_3) e^{2t}$$

Additional Example

$$\vec{X}'_{(t)} = A \cdot \vec{X}(t)$$
, for $A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$.

Intro: $\vec{X} = A\vec{X}$ (=) $\vec{X} - A\vec{X} = 0$ } homogeneous system with const. coefficient.

$$\Rightarrow \boxed{\vec{x} = \vec{v} \cdot e^{rt}}$$

=) $\vec{x} = \vec{v} \cdot e^{rt}$ - we seek the solution in this form ($\vec{v} = const$)

$$=$$
) $\vec{x} = \vec{v} \cdot re^{rt}$

$$(=) \quad \overrightarrow{A} \overrightarrow{v} = \gamma \cdot \overrightarrow{v}$$

I me solution vectors are the eigenvectors of A

Eigenproblem of A

$$A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$$

$$A\vec{v} = r\vec{v}$$

$$(\Rightarrow (A-rI)\cdot \vec{v}=\vec{0}$$

 $C \Rightarrow (A - rI) \cdot \vec{v} = \vec{0}$ } This homogeneous system has nontrivial solutions iff det (A-rI)=0

$$=) \begin{vmatrix} 2-r & -3 \\ 1 & -2-r \end{vmatrix} = 0$$

$$(=)$$
 $(r-2)(r+2) + 3 = 0$

(E)
$$r^2 - 4 + 3 = 0$$

(=)
$$r^2 - 1 = 0$$
 =) $\frac{r_1 = 1}{r_2 = -1}$

Once we have the eigenvalues, we substitute them into the eigenvalue equation:

$$A\vec{v} = r\vec{v} \quad (=) \qquad \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix} \vec{v} = r \cdot \vec{v}$$

$$(=) \qquad \begin{bmatrix} 2-r & -3 \\ 1 & -2-r \end{bmatrix} \cdot \vec{v} = \vec{0}$$

$$\begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$=) X_1 - 3X_2 = 0$$

$$=) X_1 = 3X_2$$

Let x2=5, then x1=35, so

$$\vec{v_{i}} = \begin{bmatrix} 3S \\ S \end{bmatrix} = S \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

setting s=1, we obtain:

$$\vec{v_i} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\frac{v_2 = -1}{\begin{bmatrix} 3 & -3 \\ 1 & -1 \end{bmatrix}} \vec{v} = \vec{0}$$

$$\Rightarrow \quad \chi_1 - \chi_2 = 0$$

let X2=s, then X1=s h

$$\vec{v}_2 = \begin{bmatrix} s \\ s \end{bmatrix} = s \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

setting s=1, we obtain

$$\vec{x} = \vec{v} \cdot e^{rt}$$
 =) $\vec{x}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot e^{t}$ and $\vec{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot e^{-t}$

me general solution is the linear combination:

$$\vec{X}(t) = c_1 \vec{X}_1 + c_2 \vec{X}_2 \Rightarrow \vec{X}(t) = c_1 \begin{bmatrix} 3 \end{bmatrix} e^t + c_2 \begin{bmatrix} 1 \end{bmatrix} e^t$$

Ex. Solve the given IVP:

$$\vec{X}'(t) = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \vec{X}(t) , \vec{X}(0) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Note: We seek solutions of the form $\vec{x} = \vec{v} \cdot e^{rt}$, where (r, \vec{v}) represents an eigenpair of the matrix A.

· Solving the eigenproblem of A:

$$A\vec{v} = r.\vec{v} \iff (A-Ir)\vec{v} = \vec{0}$$

 $\Rightarrow det(A-Ir) = 0$

$$=$$
) $\begin{vmatrix} 1-r & 3 \\ 3 & 1-r \end{vmatrix} = 0$

$$(=)$$
 $1-2r+r^2-9=0$

(=)
$$r^2 - 2r - \theta = 0$$

(E)
$$(r-4)(r+2) = 0$$
 $r = -2$

$$\vec{v}_{i} = ? \qquad r_{i} = 4$$

$$(A - 1r) \cdot \vec{v}_{i} = \vec{0}$$

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \cdot \begin{bmatrix} x_{i} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(=)
$$3X_1 - 3X_2 = 0$$

(=)
$$x_1 - x_2 = 0$$

$$=) X_1 = X_2 = S$$

$$=) \quad \vec{v}_1 = s \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ or } \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{\overrightarrow{v_2} = ?}{(A - Tv) \cdot \overrightarrow{v} = 0}$$

$$\begin{bmatrix}
3 & 3 \\
3 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

(=)
$$3x_1 + 3x_2 = 0$$

(=)
$$X_1 = -X_2 = -5$$

$$\vec{v_2} = \begin{bmatrix} -s \\ s \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \end{bmatrix} \Rightarrow \vec{v_2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\vec{X} = C_1 \cdot \vec{v}_1 \cdot e^{r_1 t} + C_2 \vec{v}_2 \cdot e^{r_2 t} =) \vec{X}_{(t)} = C_1 e^{q_t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{-2t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\frac{c_{11}c_{2}e_{7}^{2}}{\vec{x}(0)} = \begin{bmatrix} 3\\1 \end{bmatrix} \Rightarrow c_{1}\begin{bmatrix} 1\\1 \end{bmatrix} + c_{2}\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}$$

$$\stackrel{(a)}{(a)} \qquad \begin{bmatrix} c_{1}-c_{2}\\c_{1}+c_{2} \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}$$

$$\stackrel{(a)}{(a)} \qquad \begin{bmatrix} c_{1}-c_{2}=3\\c_{1}+c_{2}=1\\2c_{1}=4 \Rightarrow c_{1}=2\\c_{2}=1-c_{1}=2 \end{bmatrix}$$

$$\stackrel{(a)}{(a)} = 2 \cdot e^{4t} \begin{bmatrix} 1\\1 \end{bmatrix} - e^{-2t}\begin{bmatrix} -1\\1 \end{bmatrix}$$

$$or$$

$$\vec{x}(t) = \begin{bmatrix} 2e^{4t} + e^{-2t}\\2e^{4t} - e^{2t} \end{bmatrix}$$