Linear Systems of Differential Equations

Goal: using methods of matrix algebra, solve systems of linear differential equations

Sec. 10.1 Introduction to Systems of DEs

In many physical problems separate elements are linked together (e.g. a mechanical system of connected springs or a network of electrical circuits). In such cases our mathematical model is represented by a system of two or more differential equations.

Ex. A mechanical system of three springs with constants k_1, k_2, k_3 and two masses m_1, m_2 is described by the following system of differential equations:

$$m_1 y_1'' = -k_1 y_1 + k_2 (y_2 - y_1) + F_1$$

 $m_2 y_2'' = -k_3 y_2 - k_2 (y_2 - y_1) + F_2$

System of first order ODEs

A system of simultaneous 1st order ordinary differential equations if of the general form:

$$y'_{1} = g_{1}(t, y_{1}, y_{2}, K y_{n})$$

$$y'_{2} = g_{2}(t, y_{1}, y_{2}, K y_{n})$$

$$M$$

$$y'_{n} = g_{n}(t, y_{1}, y_{2}, K y_{n})$$

where each y_k (k = 1, 2, ..., n) is a function of t. The system is linear if each g_k is a linear function of (y_1, y_2, K, y_n) and otherwise the system is NONLINEAR.

Transforming a DE into a system of 1st order DEs

- Every differential equation of 2nd or higher order can be transformed into a system of first order differential equations.
- $^{\rm o}$ In general, an arbitrary $n^{\rm th}$ order DE of the form

$$y^{(n)} = F(t, y, y', y'', K, y^{(n-1)})$$

can be transformed into a system of *n* first order equations by setting

$$y_1 = y$$
, $y_2 = y'$, $y_3 = y''$, K, $y_n = y^{(n-1)}$

in which case the system becomes:

$$\begin{cases} y_1' = y_2 \\ y_2' = y_3 \\ M \\ y_{n-1}' = y_n \\ y_n' = F(t, y_1, y_2, \dots y_n) \end{cases} \Leftrightarrow \boxed{\begin{matrix} r \\ y' = A \end{matrix}} - normal form$$

Examples

1. (Based on Ex. 5-7, Sec. 10.1) Rewrite the given DE as a system of 1st order DEs. Express the system in matrix form.

a)
$$y''(t) + 5y'(t) - 7y(t) = 0$$

Answer:

Rewrite the DE by expressing the highest derivative v'':

$$y'' = 7y - 5y'$$

$$\uparrow \qquad \uparrow$$

$$y_1 \qquad y_2$$

$$y_1 = y$$
$$y_2 = y'$$

b)
$$y''(t) + 8y'(t) - 5y(t) = 2\cos(3t)$$

Answer:

Express
$$y''$$

$$y'' = 5y - 8y' + 2\cos 3t$$

$$1 \qquad 1$$

$$y_1 \qquad y_2$$

Let:

$$y_1 = y$$

 $y_2 = y'$
 $y_2' = 5y_1 - 8y_2 + 2\cos(3t)$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2\cos(3t) \end{bmatrix}$$

2. Express the DE as a system of first order equations and in matrix notation (normal form).

$$y^{(4)} + 4y'''(t) + 6y''(t) + 11y'(t) + y(t) = 7\sin t + e^{3t}$$

Answer:

Express the highest order derivative:

Jet:

$$\begin{cases}
 y_1 = y_2 \\
 y_2 = y'
 \end{cases}$$

$$\begin{cases}
 y_1' = y_2 \\
 y_2' = y_3 \\
 y_3' = y_4 \\
 y_4 = y'''
 \end{cases}$$

$$\begin{cases}
 y_1' = y_2 \\
 y_2' = y_3 \\
 y_3' = y_4 \\
 y_4' = -y_1 - 11y_2 - 6y_3 - 4y_4 + 7 \sin t + e^3t
 \end{cases}$$

or, in normal (matrix) form,

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & -11 & -6 & -4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 7 \sin t + e^t \end{bmatrix}$$

- A **system** of two differential equations of 2nd or higher order can be transformed into a system of first order differential equations.
- **3.** Express the system in normal form.

$$x'' + 6x - 5y = 0$$

$$y'' - 3x + 7y = 0$$

Answer: First, rewrite the DEs so that the highest order derivatives are expressed:

$$x'' = -6x + 5y$$

$$y'' = 3x - 7y$$

Taking into account x, x', y, and y', we view our system as:

$$x'' = -6x + 0 \cdot x' + 5y + 0 \cdot y'$$

$$y'' = 3x + 0 \cdot x' - 7y + 0 \cdot y'$$

Introduce y_1 , y_2 , y_3 , and y_4 , such that:

That way we obtain a system:

$$y_1 = x$$

$$y_2 = x'$$

$$y_3 = y$$

$$y_4 = y'$$

$$y_{1}' = y_{2}$$

$$y_{2}' = -6y_{1} + 5y_{3}$$

$$y_{3}' = y_{4}$$

$$y_{4}' = 3y_{1} - 7y_{3}$$

4. Express the system in normal form.

$$x'' - 3x' + 6t y + (\tan 2t)x = 0$$

$$y''' + 5y'' - t^3x' + 2e^t x = 0$$

Answer: Again, express the highest derivatives first.

Since the 1st DE features x'', the possible terms to consider are x and x'. Similarly, the 2^{nd} DE features y''', so we are taking into account y, y', and v''.

$$x'' = -\tan(2t) \cdot x + 3x' - 6t \cdot y$$
 $y''' = -2e^{t} \cdot x + t^{3}x' + 0 \cdot y + 0y' - 5y''$
 $y'' = -2e^{t} \cdot x + t^{3}x' + 0 \cdot y + 0y' - 5y''$
 $y'' = -2e^{t} \cdot x + t^{3}x' + 0 \cdot y + 0y' - 5y''$
 $y'' = -2e^{t} \cdot x + t^{3}x' + 0 \cdot y + 0y' - 5y''$

Let:

or:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -\tan(2t) & 3 & -6t & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -2e^t & t^3 & 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_6 \end{bmatrix}$$

Ex. Write the following differential equation as a system of two first-order equations:

$$y''(t) + 4y'(t) - y(t) = 0$$

Then express the system in matrix form.

Answer: Rewrite the DE by expressing the highest derivative y'':

$$y'' = y - 4y'$$

$$\uparrow \qquad \uparrow$$

$$y_1 \qquad y_2$$

$$y_1 = y$$
$$y_2 = y'$$

Ex. Express the DE for the undamped, unforced mass-spring oscillator

$$my'' + ky = 0$$

as an equivalent system of first-order equations.

Answer: Rewrite the DE by expressing the highest derivative y'':

$$y_1 = y$$
$$y_2 = y'$$

Ex. Rewrite the DE as a system of first order equations:

$$y'''(t) - 4y''(t) + 6y'(t) - 9y(t) = 0$$

and then express the system in matrix notation (normal form).

Answer: Rewrite the DE by expressing the highest derivative y'':

$$y''' = 9y - 6y' + 4y''$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$y_1 \qquad y_2 \qquad y_3$$

Introduce y_1 and y_2 such that:

That way we obtain a system:

$$y_1 = y$$

$$y_2 = y'$$

$$y_3 = y''$$

Consider the derivatives of
$$y_1$$
, y_2 , y_3

$$\Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 9 & -6 & 4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Ex. Consider a coupled mass-spring oscillator governed by the system:

$$\frac{d^2x}{dt^2} + 2x - y = 0$$

$$\frac{d^2y}{dt^2} + 2y - 3x = 0$$

Rewrite the system as a set of four first order DEs and express them in matrix notation (normal form).

Answer: First, rewrite the DEs so that the highest order derivatives are expressed:

$$x'' = -2x + y$$

$$v'' = 3x - 2v$$

Taking into account x, x', y, and y', we think of our system as:

$$x'' = -2x + 0 \cdot x' + y + 0 \cdot y'$$

$$y'' = 3x + 0 \cdot x' - 2y + 0 \cdot y'$$

Since the 1st DE features x'', the possible terms to consider are x and x'. Similarly, the 2^{nd} DE features y'', so we are taking into account v and v'.

Introduce y_1 , y_2 , y_3 , and y_4 , such that:

That way we obtain a system:

$$y_1 = x$$

$$y_2 = x'$$

$$y_3 = y$$

$$y_4 = y'$$