§11.5 Alternating Series

	311.5 Alternating Series
Alternating Series	- series whose terms alternate in sign
	Given $b_n > 0$, we can build an alternating series multiplying b_n by $(-1)^n$ or $(-1)^{n-1}$, so:
	$\sum_{n=1}^{\infty} (-1)^n b_n = -b_1 + b_2 - b_3 + \dots - \text{this series starts with a NEGATIVE term}$
	$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - \dots - \text{this series starts with a POSITIVE term}$
Alternating Series Test	An alternating series converges if the terms decrease toward 0 in their <i>absolute values</i> .
	If the alternating series:
	$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \dots , b_n > 0$
	satisfies:
	1. $b_{n+1} \le b_n$, for all <i>n</i> (or eventually) by their absolute value, the terms are
	2. $\lim_{n \to \infty} b_n = 0$ decreasing and approaching zero
	then the series is CONVERGENT.
Estimating Sums	- To estimate the sum <i>s</i> of a <i>convergent</i> series, we use the partial sum s_n : $s \approx s_n$
	- The accuracy of the approximation is estimated from the remainder: $R_n = s - s_n$
	Alternating Series Estimation Theorem: For a convergent alternating series whose sum is
	$s = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$, the error of estimating <i>s</i> using the <i>n</i> -th partial sum is smaller than
	the absolute value of the 1 st neglected term:
	$\left R_{n} \right = \left s - s_{n} \right \le b_{n+1}$
	s - sum of the series
	$s_n - n$ -th partial sum
	b_{n+1} - absolute value of the first neglected term