
§11.5 Alternating Series 
ALTERNATING 
SERIES  

- series whose terms alternate in sign 

Given 0nb > , we can build an alternating series multiplying nb  by ( )1 n−  or ( ) 11 n−− , so: 
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ALTERNATING 
SERIES  
TEST 

An alternating series converges if the terms decrease toward 0 in their absolute values. 

 

If the alternating series: 
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 then the series is CONVERGENT. 
 

ESTIMATING 
SUMS - To estimate the sum s  of a convergent series, we use the partial sum ns : ns s≈  

- The accuracy of the approximation is estimated from the remainder: n nR s s= −  

 

Alternating Series Estimation Theorem: For a convergent alternating series whose sum is 
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= −∑  , the error of estimating s  using the n -th partial sum is smaller than 

the absolute value of the 1st neglected term: 
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s  - sum of the series  

ns  - n -th partial sum 

1nb +  - absolute value of the first neglected term 
 

 
 


