§11.4 Comparison Tests

THE COMPARISON TEST

 If we have a series whose terms are *smaller* than those of a known *convergent* series, then our series is also convergent.

 If we have a series whose terms are *larger* than those of a known *divergent* series, then our series is also divergent.

Suppose that
$$\sum a_n$$
 and $\sum b_n$ are series with POSITIVE terms.
(i) If:
 $\begin{bmatrix} b_n \text{ is } \underline{\text{convergent}} \\ a_n \leq b_n \end{bmatrix}$ then $\sum a_n$ is also CONVERGENT
(ii) If:
 $\begin{bmatrix} b_n \text{ is } \underline{\text{divergent}} \\ a_n \geq b_n \end{bmatrix}$ then $\sum a_n$ is also DIVERGENT
then $\sum a_n$ is also DIVERGENT

<u>Note</u>:

- The condition "for all n" may be relaxed to $n \ge N$ (since convergence of a series is not affected by a finite number of terms)
- The Comparison Test applies only if the terms of the given series are *smaller* than those of a *convergent* series or *larger* than those of a *divergent* series.

Suitable comparison series:

1. A *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges if $p > 1$ and diverges if $p \le 1$
2. A geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ converges if $|r| < 1$ and diverges if $|r| \ge 1$

THE LIMIT COMPARISON TEST

Suppose that
$$\sum a_n$$
 and $\sum b_n$ are series with POSITIVE terms.

If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$
, for $0 < c < \infty$, then either – both series CONVERGE
– both series DIVERGE

<u>Note</u>:

– Often a suitable comparison series $\sum b_n$ is obtained by keeping only the dominant

terms in the numerator and the denominator (terms with highest powers)

ESTIMATING SUMS

If $a_n \le b_n$ and $\sum a_n$ converges by comparison with $\sum b_n$, we may be estimate the sum $\sum a_n$ by comparing remainders:

$$R_{n} \leq T_{n}$$

$$R_{n} = s - s_{n} = a_{n+1} + a_{n+2} + \dots$$

$$T_{n} = t - t_{n} = b_{n+1} + b_{n+2} + \dots$$

where

1. $T_n = \sum_{n=i+1}^{\infty} ar^{i-1}$ - remainder of geometric series, can be calculated as an exact sum 2. $T_n \leq \int_n^{\infty} \frac{1}{x^p} dx$ - remainder of p-series, estimated from the integral test