
§11.3 Integral Test and Estimates of Sums 
 

INTEGRAL TEST 

 

 
Suppose that: 
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REMAINDER 
ESTIMATE for 
the Integral 
Test 

 
Suppose that: 

 f  is a continuous, positive, decreasing function for x n≥  
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If nn ssR −= , then an error estimate of a partial sum approximation is 
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Adding ns  to each side of the inequality yields a more accurate approximation, 
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An important example:  

The p -series 
1

1
p

n n

∞

=
∑  is convergent if 1p >  and divergent if 1p ≤  

 


