
§11.2 Series 

INFINITE SERIES 
(series) 
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CONVERGENT 
series 

- a series whose sequence of partial sums { }ns  CONVERGES 

DIVERGENT 
series 

- a series whose sequence of partial sums { }ns  DIVERGES 
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Note: with a series na∑ , we associate two sequences: 

1. { }ns  - sequence of partial sums 

2. { }na  - sequence of the terms of the series 

If a series is convergent, then the sum is the limit of the sequence of partial sums and also lim 0nn
a

→∞
= . 

The converse does not hold: if lim 0nn
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=  we cannot conclude anything about the convergence of the series  
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≠ , then the series is divergent. 



Some Important series 
 

GEOMETRIC 
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- an infinite sequence in which each next term is obtained from the preceding term by 
multiplying it by r  

r - COMMON RATIO  

 

Sum of the geometric series: 
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Properties of Convergent Series 

Theorem: 

If na∑  and nb∑ are two convergent series, then so are the series: 
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Note: A finite number of terms do not affect the convergence or divergence of a series. 


