§11.2 Series

INFINITE SERIES
(series)-THE SUM of the terms of an infinite sequence
$$\{a_n\}_{n=1}^{\infty}$$

Notation: $\sum_{n=1}^{\infty} a_n$ or $\sum a_n$ PARTIAL SUM $\overline{s_n} = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$
 $s_1 = \sum_{k=1}^{1} a_k = a_1$
 $s_2 = \sum_{k=1}^{1} a_k = a_1 + a_2$
 $s_2 = \sum_{k=1}^{1} a_k = a_1 + a_2 + a_3$
 \vdots Given:
 $1.$ series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$
 $2.$ sequence of partial sums $s_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3$
 \vdots Given:
 $1.$ series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$
 $2.$ sequence of partial sums $s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$
If the sequence $\{s_n\}$ is convergent and $\lim_{n \to \infty} s_n = s$, then
 $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \lim_{n \to \infty} s_n = s$ Sum of a
series-THE LIMIT OF THE SEQUENCE OF PARTIAL SUMS: $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \lim_{n \to \infty} s_n = s$ CONVERGENT
series- a series whose sequence of partial sums $\{s_n\}$ DIVERGES- a series whose sequence of partial sums $\{s_n\}$ DIVERGESTHEOREMIf the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.If the series $\sum_{n=1}^{\infty} a_n$ is DIVERGENT
DIVERGENTTHEOREMIf the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.

Note: with a series $\sum a_n$, we associate two sequences:

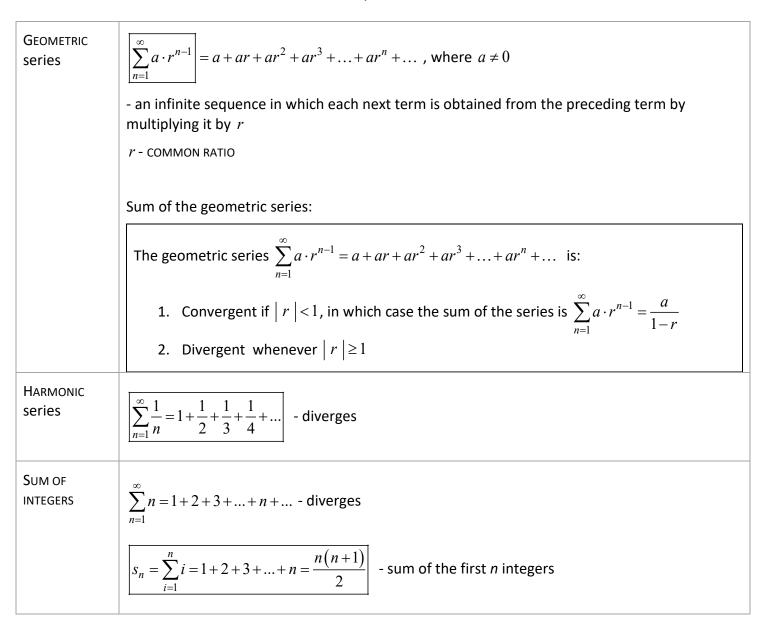
1. $\{s_n\}$ - sequence of partial sums

2. $\{a_n\}$ - sequence of the terms of the series

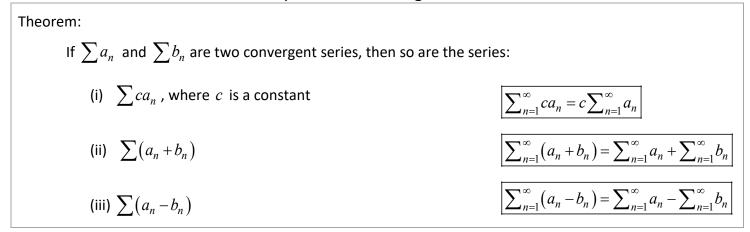
If a series is convergent, then the sum is the limit of the sequence of partial sums and also $\lim_{n\to\infty} a_n = 0$.

The converse does not hold: if $\lim_{n\to\infty} a_n = 0$ we cannot conclude anything about the convergence of the series However, if we find $\lim_{n \to \infty} a_n \neq 0$, then the series is divergent.

Some Important series



Properties of Convergent Series



Note: A finite number of terms do not affect the convergence or divergence of a series.