CONCEPT	EXPLANATION
SEQUENCE	 a list of numbers written in a definite order
	$\{a_1, a_2, a_3, \dots, a_n, \dots\}$
	$\{a_n\}$
	$\left\{a_n\right\}_{n=1}^{\infty}$
Term	– one of the numbers in a sequence
	a ₁ - 1 st term
	$a_2 - 2^{nd}$ term
	:
	$a_n - n^{\text{th}}$ or general term
Graph of a	- isolated points with coordinates $(1, a_1), (2, a_2), (3, a_3), (n, a_n),$
sequence	- a sequence can also be graphed on a real line
Limit of a sequence	$\boxed{\lim_{n \to \infty} a_n = L}$ - if terms a_n can get as close to L as we like by taking n sufficiently large
	$\forall \varepsilon > 0 \exists N > 0 s.t. \boxed{n > N \implies a_n - L < \varepsilon}$ - more precise definition
	Convergent sequence: $\lim_{n \to \infty} a_n$ exists $\sum_{n \to \infty} a_n$ exists a positive integer N such that all terms with indices $n > N$
	Divergent sequence: $\lim_{n \to \infty} a_n$ is infinite or DNE are within the ε -distance of L
	• sequence that diverges to infinity: $\lim_{n \to \infty} a_n = \infty$ For any positive number M there exists a positive integer N such
	$\forall M > 0 \exists N s.t. n > N \implies a_n > M$ exists a positive integer N such that all terms with indices $n > N$ are above M.
	Limit Laws for Sequences
	1. $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
	2. $\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$
	3. $\lim_{n \to \infty} c \cdot a_n = c \lim_{n \to \infty} a_n$
	4. $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$
	5. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} , \text{if } \lim_{n \to \infty} b_n \neq 0$
	6. $\lim_{n \to \infty} a_n^{p} = \left(\lim_{n \to \infty} a_n\right)^p, \text{ if } p > 0, a_n > 0$

Theorems about limits of sequences:

Theorem 1	If $f(n) = a_n$ for integer <i>n</i> , and $\lim_{x \to \infty} f(x) = L$, then $\lim_{n \to \infty} a_n = L$		
	<i>Note</i> : since the only difference between $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} f(x) = L$ is that <i>n</i> is an integer, we have $\lim_{n \to \infty} a_n = L$.		
	Applications:		
	1. $\lim_{n \to \infty} \frac{1}{n^r} = 0$, since $\lim_{x \to \infty} \frac{1}{x^r} = 0$.		
	2. <u>L'Hospital's Rule</u> cannot be applied directly to sequences, only to a function of a real variable		
Theorem 2	If $\lim_{n \to \infty} a_n = L$ and the function f is continuous at L , then $\boxed{\lim_{n \to \infty} f(a_n) = f(L)}$.		
Squeeze Theorem	If $a_n \le b_n \le c_n$ for $n \ge n_0$ and $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$, then $\boxed{\lim_{n \to \infty} b_n = L}$.		
Theorem 3	If $\lim_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} a_n = 0$.		

Geometric sequence

Geometric sequence		
$\lim_{n \to \infty} r^n = \begin{cases} 0 & , & r < 1\\ 1 & , & r = 1\\ diverges & , & otherwise \end{cases}$	$\lim_{n \to \infty} r^{n} = \begin{cases} 1 & , r = 1 \\ \infty & , r > 1 \\ DNE & , r < -1 \end{cases}$	e.g. $\left(\frac{1}{2}\right)^n \to 0$, as $n \to \infty$ e.g. $1^n \to 1$, as $n \to \infty$ e.g. $2^n \to \infty$, as $n \to \infty$ e.g. $\lim_{n \to \infty} (-2)^n$ oscillates as $n \to \infty$ e.g. $\lim_{n \to \infty} (-1)^n$ oscillates as $n \to \infty$

Monotonic and Bounded Sequences

Monotonic sequence	- either increasing or decreasing		
	Increasing sequence: $a_{n+1} > a_n$, for all $n \ge 1$		
	Decreasing sequence: $a_{n+1} < a_n$, for all $n \ge 1$		
Bounded sequence	- bounded from both above and below		
	Bounded above: $a_n \leq M$		
	Bounded below: $a_n \ge M$		
	Least upper bound: $b \le M$ an upper bound b that it is smaller than any other upper bound M		
	Note:		
	a) A sequence can be bounded above but not below.		
	b) Not every bounded sequence is convergent.		
Theorem	EVERY BOUNDED, MONOTONIC SEQUENCE IS CONVERGENT.		
Axiom	If S is a nonempty set of real numbers with upper bound M , then S has a least upper bound b .		