Show ALL work for full credit. Each problem 2 pts unless otherwise noted. | 1 |) | In | a | neutron | star, | the | e c | core | is | |---|---|----|---|---------|-------|-----|-----|------|----| |---|---|----|---|---------|-------|-----|-----|------|----| - A) constantly expanding and contracting. - B) made of compressed neutrons in contact with each other. - C) electrons and protons packed so tightly they are in contact. - D) no longer rotating. - E) primarily iron and silicon. - 2) Two important properties of young neutron stars are - A) extremely rapid rotation and a strong magnetic field. - B) extremely slow rotation and a strong magnetic field. - C) extremely rapid rotation and a weak magnetic field. - D) no rotation and a weak magnetic field. - E) no rotation and no magnetic field. - 3) Neutron stars are the size of _____ - 4) The mass range for neutron stars is - A) 0.08 to 0.4 solar masses. - B) 0.4 to 3 solar masses. - C) 1.4 to 3 solar masses. - D) 3 to 8 solar masses. - E) 6 to 11 solar masses. - 5) Neutron stars are 100,000 times denser than white dwarfs. - 6) Stars of less than 8 solar masses will not go supernova. - 7) While white dwarfs have a density a million times that of normal matter, neutron stars are a ______ times denser than even white dwarfs. - 8) Which of these does NOT exist? - A) a 0.06 solar mass brown dwarf - B) a 1.8 solar mass neutron star - C) a 1.5 solar mass white dwarf - D) a million solar mass black hole - E) a 6 solar mass black hole - 9) Newly-formed neutron stars start with weak magnetic fields, but they strengthen over time into pulsars. - 10) Who discovered the first four pulsars? - A) Anthony Hewish - B) Martin Schwartzschild - C) Carl Sagan - D) Jocelyn Bell - E) Stephen Hawking - 11) Pulsars are created in a Type I supernova. | 12) Pulsars can range in | mass from | to | solar r | nasses. | |---|---|---|--------------------------|----------------------| | 13) Three terrestrial-size
A) Cygnus X-1.
B) a white dwarf.
C) a millisecond p
D) a magnetar.
E) Supernova 198 | oulsar. | a fraction of an AU ha | ve been found near | | | 14) Two-thirds of all kno
A) extremely dist
B) globular cluste
C) open clusters
D) emission nebu
E) giant molecula | ant galaxies
ers
lae | ars are found in what t | ype of object? | | | 15) While most pulsars s companion. | low down over time, | . millisecond pulsars sp | oin faster due to mass t | ransfer from a close | | B) black hole.
C) white dwarf a | o orbit their neutron
nd its planetary nebu
pernova remnant. | star host. | | | | B) It would erupt
C) It could eventu
D) It would blow | ns and electrons wou
as a Type I supernov
ally become a black
off mass as an X-ray | uld turn into quarks.
va.
hole, via a hypernova e | explosion. | | | 18) A(n) | is a very ener | getic collapse forming | a black hole and jets of | gamma rays. | | B) They form from
C) Their main-se
D) Their escape v | | e the Schwartzschild ras.
0 solar masses.
n the speed of light. | ndius. | | | 20) The final mass of a no
A) 1.4 | eutron star cannot ex
B) 3 | cceed about so
C) 8 | olar masses.
D) 25 | E) 100 | | 21) Once crossed, not ev | en light can return ov | ver the | of a black hole. | | | 22) The Schwartzschild 1
A) 4 km. | radius for a 12 solar r
B) 15 km. | nass star is
C) 36 km. | D) 100 km. | E) 3000 km. | | 23) What three properties describe a black hole? | |--| | 24) How is the Schwartzschild radius calculated from the mass of a star? | | 25) Describe the range of sizes and masses of black holes. | | 26) Nothing in the universe can travel faster than | | 27) If light from a distant star passes close to a massive body, the light beam will A) change color to a shorter wavelength. B) slow down. C) accelerate due to gravity. D) continue moving in a straight line. E) bend towards the star due to gravity. | | 28) What can we detect from matter that has crossed an event horizon? A) visible light B) gamma-ray bursts C) radio waves if the matter was traveling fast enough D) X-rays if the matter was dense E) nothing | | 29) As a spaceship nears an event horizon, a clock on the spaceship will be observed A) to run backwards. B) to run faster. C) to run slowly. D) to stop. E) to run the same as one on Earth. | | 30) If the Sun were replaced by a one-solar-mass black hole, A) we would immediately escape into deep space, driven out by its radiation. B) we would still orbit it in a period of one year. C) our clocks would all stop. D) all terrestrial planets would fall in immediately. E) life here would be unchanged. | | 31) A black hole may be indirectly detected from radiation emitted by thesurrounds it as matter is pulled inward. | | _disk that | |---|-------------|------------| | 32) When light escapes from near a black hole, we see a(n) | _ redshift. | | | | | |