HW 12: Stellar Evolution Show ALL work for full credit. Each problem 2 pts unless otherwise noted. | A star (no matter what its mass) spends most of its life A) as a red giant or supergiant. B) as a protostar. C) as a T-Tauri variable star. D) as a main-sequence star. E) as a planetary nebula. | |--| | 2) We find most stars still on the main sequence because this stage takes | | 3) When a star's inward gravity and outward pressure are balanced, the star is said to be A) in rotational equilibrium. B) in gravitational collapse. C) a stage 2 protostar. D) in thermal expansion. E) in hydrostatic equilibrium. | | 4) A solar-mass star will evolve off the main sequence when A) it explodes as a violent nova. B) it builds up a core of inert helium. C) it loses all its neutrinos, so fusion must cease. D) it completely runs out of hydrogen. E) it expels a planetary nebula to cool off and release radiation. | | 5) What temperature is needed to fuse helium into carbon? A) 5,800 K B) 100,000 K C) 15 million K D) 100 million K E) one billion K | | 6) When a low mass star first runs short of hydrogen in its core, it becomes brighter because A) its outer, cooler layers are shed, and we see the brighter central core. B) it explodes as a nova. C) the core contracts, raising the temperature and extending the hydrogen burning shell outward. D) the helium flash increases the size of the star immensely. E) helium fusion gives off more energy than does hydrogen. | | 7) The helium flash converts helium nuclei into A) beryllium. B) iron. C) boron. D) oxygen. E) carbon. | | 8) A star on the red giant branch has a core about the size of | | 9) The helium flash requires a core temperature of K to create carbon. | | 10) During the red giant phase, a star's mass | | 11) A surface explosion on a white dwa companion, creates what kind of ob A) black dwarf B) brown dwarf C) nova D) Type I supernova E) Type II supernova | 3 | he atmosphere of its bir: | nary | |--|--|-------------------------------|------------| | 12) Our Sun will first become a red giar | t, then a white dwarf, and finally | a brown dwarf. | | | 13) Compared to our Sun, a typical whi
A) about the same mass and a m
B) a smaller mass and half the de
C) about the same mass and den
D) a larger mass and a hundred
E) a smaller mass and twice the | llion times higher density.
ensity.
sity.
imes lower density. | | | | 14) Under what conditions will a nova | occur? | | | | C) very common, making up the D) rare, for collapsing cores of or | ss protostars that never fuse hyd:
majority of the dark matter in the | rogen.
e universe.
mon. | | | 16) Virtually all the carbon-rich dust in A) high-mass stars.B) low-mass stars.C) brown dwarfs.D) white dwarfs.E) planetary nebulae. | the plane of the galaxy originated | l in | | | 17) What element are white dwarfs mad | e of? Why? | | | | 18) Of the elements in your body, the or A) hydrogen. B) oxyger | • | D) calcium. | E) carbon. | | 19) How are elements heavie | r than iron made? Wh | y are they rare? | | | |--|--|--------------------------|---------------------------------|--------------| | 20) Contrast the deaths of lov | v– versus high–mass s | stars. | | | | 21) Our Sun will likely die as | a Type I supernova ir | n about five billion yea | ars. | | | 22) A massive star can fuse of | nly up to the element | silicon in its core. | | | | 23) Gold is rare since the only | y time it can be formed | d is during a supernov | va. | | | 24) Type II supernovae occur
A) oxygen. | when their cores star
B) carbon. | t making
C) iron. | D) uranium. | E) silicon. | | 25) The heaviest nuclei of all A) in the core collapse B) in the horizontal br C) in the ejection of m D) during nova explos E) in dense white dwa | that sets the stage for
canch.
atter in the planetary sions. | | | | | 26) A recurring nova might e supernova. | ventually build up en | ough mass to become | e a Type | | | 27) Noting the main sequenceA) distance.B) radial velocity.C) number of stars.D) age.E) total mass. | e turnoff mass in a sta | r cluster allows you to | o determine its | | | 28) Stars of typesclusters. | and | | are found only in the y | oungest star | | 29) Globular clusters are dom | ninated by bright red s | supergiants at the top | right of the H-R diagram | n. | | 30) Of the main sequence star A) B | rs, those of type
B) K | have the longest i | main-sequence life span
D) G | s.
E) M | | 31) Knowing a cluster's turn- | -off mass tells you the | cluster's | · | |