Show ALL work for full credit. Each problem 2 pts unless otherwise noted. | B) It dims and red
C) Its motion cause
D) The light that p | completely block all l
dens the light of all mo
es all light to be redshi | light, such as the Horse
ore distant stars.
Ifted as it passes throuş
blueshifted due to the | gh these clouds. | | | | |--|--|---|---------------------------------|-----------------------------|--|--| | 2) Of all forms of electron Galaxy. | magnetic energy, | radiation gives us | s the least access to our | entire Milky Way | | | | A) ultraviolet | B) visible light | C) X-ray | D) radio | E) infrared | | | | 3) Light from distant star | rs that must pass throu | ugh dust arrives bluer | than when it left its sta | r. | | | | 4) There is as much mass | s in the voids between | the stars as in the stars | s themselves. | | | | | B) the dust particle
C) it is so cold it ab
D) there is 100 time | ect all light back towa
es are irregular in shap
psorbs higher energy p
es more opaque gas th | rd their stars, not towa | ard us.
interstellar medium. | | | | | 6) Neutral hydrogen clouds appear | | when view | when viewed visually. | | | | | 7) A region of ionized ga
A) nebular hole.
B) dark nebula.
C) emission nebula
D) dust cloud.
E) absorption nebu | a. | dded hot young stars, | is a(n) | | | | | 8) Almost all of the comp
A) hydrogen | plex molecules found i
B) carbon | in space are based on _
C) silicon | atoms. D) oxygen | E) iron | | | | 9) Emission nebulae occi
A) visible light | ur only near stars that
B) radio | emit large amounts of
C) infrared | | etic radiation.
E) X-ray | | | | 10) Emission nebulae get | their red color from th | e red supergiants form | ning in them. | | | | 12) Dark dust clouds are optically invisible, but give off radio energy. | 13) Neutral hydrogen can be detected because its electron occasionally the 21-cm emission line for radio observers. | | | | lly | its spin and creates | | |---|---|----------------------------------|-------------------------|----------------------------------|----------------------|--| | 14) M | Iolecules are found only | <i>i</i> in the | clouds of | the interstellar medium. | | | | 15) W | That is the temperature | of the gas in the dark | dust clouds, and v | why is this important to | molecule formation? | | | 16) W | What information does 2 A) their temperature B) their density C) their motion D) their distribution E) all of the above | 1-cm radiation provi | de about the gas cl | ouds? | | | | 17) Ir | nterstellar dust clouds a A) radio and X-ray B) visible and UV C) visible only D) radio and infrared E) UV and infrared | re <i>best</i> observed at wh | at wavelength? | | | | | 18) T | he interstellar gas in ou
A) 10 | r portion of the Galax
B) 100 | y is about
C) 1,000 | _ K in temperature.
D) 10,000 | E) 100,000 | | | 19) A | t what core temperatur
A) 3,000 K
B) 5,800 K
C) 1 million K
D) 10 million K
E) 100 million K | e does hydrogen begi | n to fuse to helium | n? | | | | 20) A | photosphere appears of A) 1. | on a protostar near the
B) 2. | e end of stage
C) 3. | D) 6. | E) 7. | | | 21) St | ars evolve along the ma | ain sequence. | | | | | | 22) W | That is the critical tempe | erature for stage 7; wh | ny? | | | | | 23) Which statement about the stages of starbirth is false? A) Nuclear reactions begin in the core by stage 4. B) The T-Tauri wind is prevalent in stage 5. C) At stage 1, only the cloud exists. D) By stage 7, the star has reached the main sequence. E) By stage 3, the star has formed a photosphere. | |---| | 24) Why is infrared much better than visible light in studying star formation? | | | | 25) Most stars in our part of the Galaxy are formed A) in associations of thousands of stars across a spiral arm of the Galaxy. B) in globular clusters of millions of stars. C) in a singular event just after the Big Bang. D) alone. E) in open clusters of a few dozen. | | 26) The single most important determinant of the temperature, density, radius, luminosity, and pace of evolution of a protostar is its A) spin. B) magnetic field. C) mass. D) chemical composition. E) molecular composition. | | 27) A cloud fragment too small to collapse into a main sequence star becomes a A) brown dwarf. B) white dwarf. C) T-Tauri object. D) pulsar. E) planet of another star. | | 28) Approximately how many brown dwarfs are believed to exist in the Milky Way galaxy? A) 100,000 B) one million C) one billion D) one hundred billion E) ten trillion | | 29) Jupiter and the Sun have almost the same composition and density; why isn't Jupiter also a star? | | 30) The Pleiades (or Seven Sisters) an example of a(n) cluster. | | 31) In typical globular clusters, the brightest stars are | |--| | 32) All globular clusters in our Milky Way are about how old? A) one to three billion years old B) around ten billion years old C) a variety of ages, from newly born to twenty billions years old D) ten to fifty million years old E) less than a million years | | 33) A star cluster with a lot of hot, blue stars must be relatively young. | | 34) Compared to an open cluster, a globular cluster will have more hot, blue stars. | | 35) Why are star clusters ideal sites to study stellar evolution? | | | | 36) Contrast open and globular star clusters. |