Show ALL work for full credit. Each problem 2 pts unless otherwise noted.

B) It dims and red C) Its motion cause D) The light that p	completely block all l dens the light of all mo es all light to be redshi	light, such as the Horse ore distant stars. Ifted as it passes throuş blueshifted due to the	gh these clouds.			
2) Of all forms of electron Galaxy.	magnetic energy,	radiation gives us	s the least access to our	entire Milky Way		
A) ultraviolet	B) visible light	C) X-ray	D) radio	E) infrared		
3) Light from distant star	rs that must pass throu	ugh dust arrives bluer	than when it left its sta	r.		
4) There is as much mass	s in the voids between	the stars as in the stars	s themselves.			
B) the dust particle C) it is so cold it ab D) there is 100 time	ect all light back towa es are irregular in shap psorbs higher energy p es more opaque gas th	rd their stars, not towa	ard us. interstellar medium.			
6) Neutral hydrogen clouds appear		when view	when viewed visually.			
7) A region of ionized ga A) nebular hole. B) dark nebula. C) emission nebula D) dust cloud. E) absorption nebu	a.	dded hot young stars,	is a(n)			
8) Almost all of the comp A) hydrogen	plex molecules found i B) carbon	in space are based on _ C) silicon	atoms. D) oxygen	E) iron		
9) Emission nebulae occi A) visible light	ur only near stars that B) radio	emit large amounts of C) infrared		etic radiation. E) X-ray		
10) Emission nebulae get	their red color from th	e red supergiants form	ning in them.			

12) Dark dust clouds are optically invisible, but give off radio energy.

13) Neutral hydrogen can be detected because its electron occasionally the 21-cm emission line for radio observers.				lly	its spin and creates	
14) M	Iolecules are found only	<i>i</i> in the	clouds of	the interstellar medium.		
15) W	That is the temperature	of the gas in the dark	dust clouds, and v	why is this important to	molecule formation?	
16) W	What information does 2 A) their temperature B) their density C) their motion D) their distribution E) all of the above	1-cm radiation provi	de about the gas cl	ouds?		
17) Ir	nterstellar dust clouds a A) radio and X-ray B) visible and UV C) visible only D) radio and infrared E) UV and infrared	re <i>best</i> observed at wh	at wavelength?			
18) T	he interstellar gas in ou A) 10	r portion of the Galax B) 100	y is about C) 1,000	_ K in temperature. D) 10,000	E) 100,000	
19) A	t what core temperatur A) 3,000 K B) 5,800 K C) 1 million K D) 10 million K E) 100 million K	e does hydrogen begi	n to fuse to helium	n?		
20) A	photosphere appears of A) 1.	on a protostar near the B) 2.	e end of stage C) 3.	D) 6.	E) 7.	
21) St	ars evolve along the ma	ain sequence.				
22) W	That is the critical tempe	erature for stage 7; wh	ny?			

 23) Which statement about the stages of starbirth is false? A) Nuclear reactions begin in the core by stage 4. B) The T-Tauri wind is prevalent in stage 5. C) At stage 1, only the cloud exists. D) By stage 7, the star has reached the main sequence. E) By stage 3, the star has formed a photosphere.
24) Why is infrared much better than visible light in studying star formation?
 25) Most stars in our part of the Galaxy are formed A) in associations of thousands of stars across a spiral arm of the Galaxy. B) in globular clusters of millions of stars. C) in a singular event just after the Big Bang. D) alone. E) in open clusters of a few dozen.
26) The single most important determinant of the temperature, density, radius, luminosity, and pace of evolution of a protostar is its A) spin. B) magnetic field. C) mass. D) chemical composition. E) molecular composition.
 27) A cloud fragment too small to collapse into a main sequence star becomes a A) brown dwarf. B) white dwarf. C) T-Tauri object. D) pulsar. E) planet of another star.
28) Approximately how many brown dwarfs are believed to exist in the Milky Way galaxy? A) 100,000 B) one million C) one billion D) one hundred billion E) ten trillion
29) Jupiter and the Sun have almost the same composition and density; why isn't Jupiter also a star?
30) The Pleiades (or Seven Sisters) an example of a(n) cluster.

31) In typical globular clusters, the brightest stars are
32) All globular clusters in our Milky Way are about how old? A) one to three billion years old B) around ten billion years old C) a variety of ages, from newly born to twenty billions years old D) ten to fifty million years old E) less than a million years
33) A star cluster with a lot of hot, blue stars must be relatively young.
34) Compared to an open cluster, a globular cluster will have more hot, blue stars.
35) Why are star clusters ideal sites to study stellar evolution?
36) Contrast open and globular star clusters.