Show ALL work for full credit. Each problem 2 pts unless otherwise noted.

- 1) According to Newton's third law, when the *Voyager* probes passed Jupiter in 1979, they exerted exactly the same force on Jupiter as the giant planet did on them.
- 2) According to Newton's second law, if you double the force acting on a body, the acceleration will double.
- 3) According to Newton's first law, an object traveling in a circle does not have a force acting on it.
- 4) According to Kepler's third law, if you know the planet's orbital period, you can find its average distance from the Sun.
- 5) Kepler relied heavily on the telescopic observations of Galileo in developing his laws of planetary motion.
- 6) Among Galileo's discoveries with his telescope were sunspots.
- 7) Galileo's observations of the entire phase cycle of Venus proved that Ptolemy's epicycles could not be correct in keeping Venus between us and the Sun.
- 8) Copernicus believed the Earth was the center of all celestial motion.
- 9) In Ptolemy's geocentric model, retrograde motion occurs when the planet is closest to us, on the inside portion of the
 - A) deferent.
- B) epicycle.
- C) equant.
- D) ellipse.
- E) ecliptic.

- 10) According to Copernicus, the retrograde motion for Mars must occur
 - A) at quadrature, when Mars lies exactly 90 degrees east or west of the Sun.
 - B) at greatest elongation, when Mars can get up to 47 degrees from the Sun.
 - C) at opposition, when the Earth overtakes Mars and passes between Mars and the Sun.
 - D) at inferior conjunction, when Mars laps the Earth and passes between us and the Sun.
 - E) at superior conjunction, when Mars lies on the far side of the Sun.
- 11) Which of these was NOT seen telescopically by Galileo?
 - A) Venus' phase cycle
 - B) sunspots
 - C) craters and mare on the Moon
 - D) four moons around Jupiter
 - E) stellar parallax
- 12) Tycho Brahe's contribution to Kepler's Laws of Planetary Motion were
 - A) his observations of Jupiter's moons.
 - B) his detailed and accurate observations of the planets' positions.
 - C) a mathematical explanation of epicycles.
 - D) a precise lunar calendar.
 - E) the correct explanation of lunar phases.

•	rked, where Copernic	cus' original heliocentri	ic model failed, because l	Kepler described
the orbits as A) elliptical, not o	cincular			
-	nts instead of epicycle	ne		
C) around the Su				
	nan Copernicus had ei	nvisioned		
_	-	for retrograde motions		
2) complexy with	epreyeres to decount	ior retrograde motions	•	
14) The force of gravity	varies with the			
	e of the distance separ	C		
	distance separating th	ne two bodies.		
C) product of the				
D) Both A and B				
E) Both A and C	are correct.			
15) How much stronger	is the gravitational n	ıll of the Sun on Earth	at 1 AU, than it is on Sat	turn at 10 AU?
A) 5	B) 10	C) 25	D) 100	E) 250
, -	_,	-,	_,	_, _, .
16) The mean distance b	etween the Earth and	Sun is called the		
A) Kepler				
B) parsec				
C) light-year				
D) megameter				
E) astronomical	unit			
15) A 1' (NI (d 2 (d	. 1.1.	1 . 1 . 1 . 1 1	
17) According to Newto	-			E) Earth
A) Venus	B) Sun	C) Moon	D) Jupiter	E) Earth
		, Aristotl	e wrongly concluded we	could not be in
orbit around the Sun	1.			
10) Ptolomy's model wa	0	with the Earth fixed i	n the center of the unive	* ***********************************
19) I tolemy s model was	5	, with the Earth fixed i	if the center of the unive	ise.
20) The time for a planet	t to revolve around the	e Sun is its		
21) When Earth overtak	es Mars, the outer pla	net retrogrades near	·	
22) Galileo's discovery o	of four moons orbiting	;r	provided new support fo	r the ideas of
Copernicus.		1	11	
23) In Newton's first law	v, the	of a body causes i	t to resist changes in its r	notion
		Ĭ	C	
24) Newton found that ¿ pulling on each othe		e	of the distance between t	the two bodies
r same of cach offic				

25) How did Ptolemy explain the retrograde motion of Venus?
26) What "imperfections" on the Moon were visible to Galileo's telescopes?
27) How did Tycho's detailed observations of Mars' brightness help show that its orbit could not be circular?
28) Explain how the eccentricity describes the shape of an ellipse.
29) According to Newton's first law, if a body is moving in the absence of any net external force, describe the continuing motion of the object.
30) How would Ptolemy explain the rising of the Sun? Contrast this to Copernicus' explanation of the same event.
31) How can astronomers determine the mass of the Sun?
32) 10 pts) Summarize how the telescopic discoveries of Galileo could be used in support of Copernicus.